Acknowledgment, We thank S. J. Atherton, S. M. Hubig, and T. A. Albright for helpful advice, J. D. Korp for crystallographic assistance, and the Center for Fast Kinetic Research (under support from NIH Grant RR0886 and the University of Texas, Austin) for use of their picosecond laser facilities. We also acknowledge the National Science Foundation, the R. A. Welch

Foundation, and the Texas Advanced Research Program for financial support and funds to construct the laser facility in Houston.

Supplementary Material Available; Tables of bond distances and angles and atomic coordinates and equivalent isotropic displacement parameters for tropylium EDA complexes (5 pages). Ordering information is given on any current masthead page.

The Total Synthesis of Avermectin $\mathrm{A}_{1 \mathrm{a}}$

Samuel J. Danishefsky,* David M, Armistead, Francine E, Wincott, Harold G, Selnick, and Randall Hungate

Contribution from the Department of Chemistry, Yale University, New Haven, Connecticut 06511. Received July 6, 1988

Abstract

Key fragments for the total synthesis of the title compound were elaborated from D-ribose and D-glucose and coupled through a crossed aldol dehydration maneuver ($33+\mathbf{4 4} \boldsymbol{\rightarrow 4 6}$). An intramolecular variant of the Nozaki reaction ($\mathbf{4 7} \rightarrow$ 48) led to the all-critical oxahydrindene system. Disaccharide 66 was synthesized from fragments which were prepared by cyclocondensation reactions. Stereospecific coupling of 66 to aglycon 55 gave 67 and, eventually, avermectin $A_{1 a}$.

Background and Synthetic Goals, The screening of microbially derived fermentation products for new antibacterial agents has provided for a fruitful collaboration among biology, chemistry, and medicine. ${ }^{1}$ This type of multifaceted venture attained early prominence and success in the discovery and development of penicillins. ${ }^{2}$ The possibilities of finding agents which might prove useful in other kinds of therapeutic applications are receiving increasing scrutiny.

It was in the course of investigating fermentation products of a broth derived from Streptomyces avermitilis MA-4680 that the avermectins were first encountered. An assay involving survival of mice infected with Nematodirus dubuis enabled a team of Merck scientists to discover anthelmentic activity of a high order from a soil sample from the Shizuaka Prefecture in Japan. ${ }^{3}$ A collection of eight closely related compounds called avermectins was eventually separated into individual components. The delineation of the structures of these compounds relied heavily on a crystallographic determination of avermectin $\mathrm{B}_{1 \mathrm{a}}$ and avermectin $\mathrm{B}_{2 \mathrm{a}}$ aglycon. ${ }^{4}$ From these firm bases, with extensive support via spectroscopic techniques and some chemical correlations, the structures of the eight compounds shown in Figure 1 could be deduced. ${ }^{5}$

The avermectins are active against two major classes of parasites, nematodes and arthropods. The mechanism of action appears to involve interferences with GABA-mediated muscular regulation. The quest for a detailed insight into the mechanism of action of this class of compounds and the evaluation of the therapeutic advantages of specific naturally occurring members, congeners, and semisynthetic mixtures (cf. ivermectins) is an important area of biomedical research. ${ }^{6}$ The avermectins already enjoy extensive usage in animal (e.g. cattle, sheep, horses) health maintenance against a broad range of internal parasites.

The most promising targets of opportunity for structural manipulation of the activity profile have been in the carbohydrate region attached to C_{13} and in the unsaturation level of the spi-

[^0]roketal sector. Modifications of the oxahydrindene area and attempts at realizing avermectin activity via structures in which the macrolactone activity is simulated have been unrewarding. ${ }^{7}$

Not surprisingly, the combination of the novelty of the molecular structure of these compounds, their already demonstrated commercial importance, and the possibilities for discovery of new therapeutic uses, including human application, have engendered significant interest in the synthesis of avermectins. ${ }^{8}$ Two important milestones in this regard were achieved by Smith and Williams, who independently reported the syntheses of milbemycin $\mathrm{A}_{5} .^{9-11} \quad$ A variety of sequences for the synthesis of the spiroketal section have been demonstrated. ${ }^{12}$ More difficult has been the matter of a facile assembly of the oxahydrindene moiety. ${ }^{13}$ Of late, some promising advances in this regard have been recorded.

Several important breakthroughs in charting a comprehensive strategy for the total synthesis of the avermectins have been achieved by Hanessian and co-workers. These studies established routes to the optically pure spiroketal of the avermectin la series
(7) (a) Mrozik, H.; Eskola, P.; Fisher, M. H., Egerton, J. R.; Cifelli, S. Ostlind, D. A. J. Med. Chem. 1982, 25, 658. (b) Chabala, J. C.; Mrozik, H.; Tolman, R. L.; Eskola, P.; Lusi, A.; Peterson, L. H.; Woods, M. F.; Fisher, M. H.; Cambell, W. C.; Egerton, J. R., Ostlind, D. A. J. Med. Chem. 1980, 23, 1134.
(8) For a recent review of related milbemycin syntheses, see: Davies, H. G.; Green, R. H. Nat. Prod. Rep. 1986, 87.
(9) Smith, A. B., III; Schow, S. R.; Bloom, J. D.; Thompson, A. S.; Winzenburg, K. N. J. Am. Chem. Soc. 1982, 104, 4015.
(10) Schow, S. R.; Bloom, J. D.; Thompson, A. S. Winzenburg, K. N.; Smith, A. B., III J. Am. Chem. Soc. 1986, 108, 2662.
(11) Williams, D. R.; Barner, B. A.; Nishitani, K.; Phillips, J. G. J. Am. Chem. Soc. 1982, 104, 4708.
(12) For previous syntheses of milbemycin and avermectin spiroketals, cf. interalia: (a) Street, D. A.; Kocienski, P.; Campbell, S. F. J. Chem. Soc., Chem. Commun. 1985, 1326. (b) Baker, R.; Boyes, R. H. O.; Broom, D. M. P.; Devlin, J. A.; Swain, C. J. Ibid. 1983, 829. (c) Baker, R.; Swain, C. J.; Head, J. C. Ibid. 1985, 309. (d) Hanessian, S.; Ugolini, A.; Therien, M. J. Org. Chem. 1983, 48, 4427. (e) Culshaw, D.; Grice, P.; Ley, S. V.; Strange, G. A. Tetrahedron Lett. 1985, 26, 5837. (f) Ardisson, J.; Fērēzou, J. P.; Julia, M.; Lenglet, L.; Pancrazi, A. Tetrahedron Lett. 1987, 28, 1997. (g) Attwood, S. V.; Barrett, A. G. M.; Carr, R. A. E.; Richardson, G. J. Chem. Soc., Chem. Commun. 1986, 479.
(13) For synthetic studies related to the oxahydrindrene portion of the avermectins, see: (a) Jung, M. E.; Street, L. J. J. Am. Chem. Soc. 1984, I06, 8327. (b) Kozikowski, A. P.; MaloneyHuss, K. E. Tetrahedron Lett. 1985, 26, 5759. (c) Prashad, M.; Fraser-Reid, B. J. Org. Chem. 1985, 50, 1564. (d) Crimmins, M. T.; Lever, J. G. Tetrahedron Lett. 1986, 27, 291. (e) Ireland, R. E.; Obrecht, D. M. Helv. Chim. Acta 1986, 69, 1273. (f) Hanessian, S.; Beaulieu, P.; Dubè, D. Tetrahedron Lett. 1986, $27,5071$. (g) Barrett, A. G. M.; Capps, N. K. Tetrahedron Lett. 1986, 27, 5571 . (h) Jung, M. E.; Street, L. H.; Usui, Y. J. Am. Chem. Soc. 1986, 108, 6810. (i) Ardisson, J.; Ferezou, J. P.; Julia, M.; Pancrazi, A. Tetrahedron Lett. 1987, 28, 2001.

Figure 1,
and identified new possibilities for the synthesis of the oxahydrindene region. ${ }^{14}$ The feasibility of macrolactonization of a Δ^{2} variation of avermectin seco acid was established. ${ }^{15}$ The issue of the overall conversion of a Δ^{2} tautomer to an avermectin with the correct C_{2} stereochemistry, which will be discussed later in this report, was also accomplished by Hanessian. ${ }^{16}$ Finally, we note that a protocol for the attachment of the disaccharide (L -oleandrosyl-L-oleandrose) to an avermectin aglycon was previously demonstrated. ${ }^{14,17}$

We defined as our goal a total synthesis of avermectin A_{la}. One of our reasons for focusing on the la system was the additional challenge of dealing with the additional stereogenic center at C_{26}, as well as the $\mathrm{C}_{22}-\mathrm{C}_{23}$ double bond. ${ }^{18}$ While the B avermectins $\left(\mathrm{C}_{5} \mathrm{OH}\right)$ are much more active biologically, we focused on the A series for two reasons. First, the C_{5} methyl ether target would avoid the need for an additional protecting group, which could well be necessary for the C C_{5} hydroxy target. Furthermore, the conversion of avermectin $A_{1 a}$ to avermectin $B_{1 a}$ has been accomplished by oxidative demethylation. ${ }^{19}$ Thus, a synthesis of the former provides access to the latter series.

Our goals in this undertaking were several. First, we hoped to achieve a total synthesis of avermectin A_{la}. To accomplish this would require that strategies employed to solve regional issues be adaptable to the entire molecular problem. We wished to accomplish the aglycon total synthesis in a fashion where a maximum amount of stereochemical selectivity is transmitted by intramolecular biases rather than by grouping of dissymmetric fragments. ${ }^{20}$ Furthermore, we hoped to synthesize the L -olean-drosyl-L-oleandrose carbohydrate through new technology rather than by partial synthesis. Finally, we wanted to achieve the disaccharide synthesis and glycosylation in a fashion which would have implications in the fashioning of new semisynthetic avermectins and, more broadly, in the larger field of oligosaccharide synthesis. Given the excellent availability of the avermectins from natural sources, it would be through advances in the carbohydrate sector (both synthesis and glycosylation) that synthesis would be most promising for practical benefits.

Synthetic Strategy, Of course, with so multifaceted a target as avermectin $\mathrm{A}_{1 \mathrm{a}}$, the most carefully considered strategies are

[^1]
eqn. 1

eqn. 5

Figure 2,
apt to undergo substantial modification and even abandonment under the often harsh realities of implementation. In this type of venture, flexibility of the design with ample opportunities for reorientation is often crucial for success. Several of the cornerstones of our basic plans involved chemistry previously developed in our laboratory in connection with this undertaking and toward related goals. Thus, the potentially serious issue of stereochemistry at carbons 24 and 25 would be addressed via our previously developed carbon Ferrier-crotylsilane technology (see eq 1, Figure 2). ${ }^{21}$ The spiroketal moiety would be assembled through oxidative cyclization (see eq 2). ${ }^{22 a, b, c}$ An aldol-dehydration sequence of a suitable enal would be used to link a tetrahydrofuranone to an enal, thereby generating a dienone (see eq 3). The $C_{1}-C_{5}$ side chain functionality shown as R would be so selected that at a strategic point it would emerge as an α, β unsaturated aldehyde. This would be cyclized through one of several a priori possible protocols to give an α, β-unsaturated seco-acyl system (see eq 4). ${ }^{22 d}$ This would eventually be converted to avermectin A_{la} aglycon by macrolactonization and deconjugation.

The total synthesis of the L-oleandrosyl-L-oleandrose would exploit our previously demonstrated chiral auxiliary-chiral catalyst synergism for synthesizing L -sugars. ${ }^{23}$ In the case at hand, there would be fashioned a glycal-like structure (see eq 5). A disaccharide, terminating in a glycal at its "reducing" end, would then be fashioned (see eq 6). To complete the synthesis of avermectin $\mathrm{A}_{\mathrm{l}_{a}}$, the aglycon would be coupled to the disaccharide with appropriate functional group management. Below we report

[^2]

Figure 3,
the realization of these goals and the attainment of the first total synthesis of a naturally occurring avermectin, i.e., avermectin $A_{1 \mathrm{a}} .{ }^{24}$

Discussion of Results

D-Glucal tripivalate (2) ${ }^{25}$ and D-ribose aldehyde (34, vide infra) were selected as building blocks of suitably matched chirality. As will be seen, none of the stereogenic centers of 2 would survive its eventual transformation to avermectin A_{la} (1). However, by a process of chirality transfer, the information contained at position 5 of compound 2 could be relayed to its 1 -position. This 1 -position was destined to become carbon 25 of the target structure. The medium for this chirality transmission was the BF_{3}-catalyzed reaction of tripivalate 2 with (Z)-crotyltriphenylsilane (3) (Figure 3). ${ }^{26}$ There was obtained a 90% yield of a $4.5: 1$ ratio syn to anti isomers, $\mathbf{4 s}: \mathbf{4 a}$ (the latter, not shown here). Fortunately, these could be separated by chromatography on silver nitrate impregnated silica gel on multigram scales. Only the major compound was carried forward. Within the limits of our detection, the process was specific for axial attack; ${ }^{27}$ the lack of specificity was manifested only at the topographic levels (C_{26} syn: C_{26} anti). ${ }^{21}$ While higher levels of syn to anti selectivity were realizable with other silanes, the combination of overall chemical yield and handling convenience associated with the crystalline 3 dictated its employment. Fortunately, it was possible to distinguish the terminal vinyl group relative to the endocyclic double bonds vis-a-vis

[^3]susceptibility to catalytic hydrogenation. Compound 5 was thus obtained in 90% yield.

The timing was now propitious for the simultaneous introduction of the α-methyl branch at C_{24} and the installation of the 22-23 double bond. This was accomplished by the reaction of 5 with lithium dimethyl cuprate. Surprisingly, the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ - type displacements of allylic acyloxy groups by alkyl cuprates, a well-studied reaction, ${ }^{28}$ has not been employed for this specific kind of branch-point installation in the carbohydrate field. In practice, the reaction worked very nicely, in the expected stereochemical sense, to afford a 78% yield of 6 . Thus, in three simple maneuvers the stereochemical and regiochemical substitution pattern required in the ultimate target structure become available to us. The primary pivalate suffered saponification with lithium hydroxide to afford the difficultly handleable (volatile!) alcohol 7 in 82% yield. Its derived triflate 8 underwent displacement through the agency of sodium cyanide in DMF. The resultant nitrile (9), thus obtained in 82% yield, could be reduced with DIBAH in ether, to afford aldehyde 10 in 90% yield.

The possibility of a Lewis acid catalyzed diene-aldehyde cyclocondensation reaction ${ }^{29}$ of aldehyde 10 with diene 11 now presented itself. The utility of such a reaction in our scheme was contingent on the realizability of chirality transmission ${ }^{30}$ from aldehyde 10 to the dihydropyrone moiety which would emerge. Put differently, it is this reaction which would establish the stereochemical connectivity between C_{19} and carbons $26,25,24$, as well as 21 . As will be seen, the relationship between carbons 19 and 17 can be readily established by fashioning of an equatorial alcohol at C_{17}. Thus, if the absolute stereochemistry at C_{19} is

[^4]

Figure 4,
established properly, the stereochemistry at 17 will also be appropriate. The link in this scheme arises from C_{21}, itself destined to be oxidized. A threo relationship between carbons 21 and 19 at the stage of dihydropyrone $\mathbf{1 2}$ would establish the required connectivity. It is further seen by inspection that a chelationcontrolled topography in the cyclocondensation reaction, with a metal ion simultaneously ligated between the C_{19} aldehyde and the dihydropyran oxygen (linked to C_{21} and C_{25}), might provide a useful, if temporary, matrix. ${ }^{31}$

A variety of possible catalysts were screened with this possibility in mind, and numerous reaction conditions were surveyed. An eventual optimization between chemical yield, ratio, and reproducibility settled upon the use of anhydrous magnesium bromide in methylene chloride at $-78^{\circ} \mathrm{C}$. A $4: 1$ ratio of two dihydropyrones was obtained in 77% yield. This mixture did not lend itself to separation. Rather, the two epimeric compounds were submitted to reduction with sodium borohydride-cerium(III) chloride ${ }^{32}$ to give the equatorial alcohol, now known to be compound 13, in homogeneous form. Although the stereochemistry at C_{19} could not be proven at this stage, it was surmised by analogy with a previously documented case. ${ }^{22 a}$ In light of subsequent events, this surmise was correct.

After protection of the alcohol as its OTBS ether, the pyran ring was readied for disconnection. Hydroxybromination (aqueous NBS) of 14, followed by reductive debromination $\left(\mathrm{Ph}_{3} \mathrm{SnH}\right)$ produced 15 in 71% yield. Reductive $\left(\mathrm{LiBH}_{4}\right)$ disassembly of the hemiacetal gave a 93% yield of diol 16 and then (${ }^{\mathrm{BuCOCl}}$, DMAP) the dipivalate 17. The required alcohol was liberated through the action of HF in acetonitrile. The substrate (18) for oxidative cyclization was in hand.

The possibility of synthesizing spiroketals via oxidative cyclization had been previously explored by Kay, ${ }^{22 b, c}$ though on very simple models. A previous report from our laboratory demonstrated the first instance where such a reaction could be applied in the presence of a double bond ${ }^{22 a}$ (which might a priori have favored iodoetherification rather than dehydrogenation as a cyclization route). In the event, reaction of compound 18 with mercuric oxide-iodine in carbon tetrachloride in the presence of light afforded the desired 19. The stereochemistry at the spiroketal carbon was assigned as shown. In this (S) configuration the demands of the anomeric effect ${ }^{33}$ and the equatorial disposition of the bulky substituents on each of the tetrahydropyran rings are harmonized. The higher yields were realized in small scale. In the scale indicated (Experimental Section), the yield was 53%. No other spiroketal epimers were identified.

[^5]For purposes of structural correlation, both pivaloyl groups were cleaved reductively (DIBAH). The NMR and infrared spectra, as well as the optical rotation of the resultant diol 20, were identical with those of the same compound obtained by degradation of avermectin $B_{1 \mathrm{a}}$, by using a recently described protocol. ${ }^{34}$ In this fashion, the stereochemical assignments were corroborated.
A simplification in the synthesis was achieved when it was discovered that the primary pivalate of 19 could be selectively cleaved with potassium triethylborohydride to afford $\mathbf{2 1}$ in 78% yield. Swern oxidation ${ }^{35}$ of 21 afforded 22 in 91% yield.

The plan for the installation of the three E double bonds called for reliance on condensation reactions which would produce α,-β-unsaturated carbonyl systems. In this fashion one could take advantage of the generally high proclivity for such reactions to produce trans olefinic linkages. The first application of this notion in our synthesis was realized in the condensation of 22 with phosphorane 23 (Figure 4). ${ }^{36}$ A 94% yield of E-enal was attained.

Until this' juncture all of the stereogenic centers were fashioned by taking advantage of resident stereochemical biases contained within the substrate (i.e., substrate control). The prospects of further intramolecular communication to bias the outcome at stereogenic centers 12 and 13 seemed none too promising. A variety of possibilities were explored to achieve this stereochemistry via the use of fragments of proper configuration. Options wherein the insert piece contained one or both of these centers were screened. Unfortunately, none of these could be brought to fruition.
There remained available the possibility of controlling the stereochemistry in this sector through recourse to a relevant reagent which would be equipped with a chiral auxiliary which would impart a high facial bias to its reaction with $24 .{ }^{37}$ An attractive possibility in this regard would be a crotyl boronate, exploiting the major advances of Roush ${ }^{38}$ and Brown. ${ }^{39}$ Given the proper geometric isomer of the boronate and the properly selected enantiomer of the auxiliary, a simultaneous solution to attainment of the configurations at C_{13} and C_{12} might be fashioned.
On the basis of precedents, we examined the reaction of E-enal 24 with the (E)-crotyl boronate 25R bearing an (R)-tartrate auxiliary. ${ }^{38}$ The crude 4:1 mixture of homoallylic alcohols 26 and 27 (99% combined) was converted to the OTBS derivatives 28
(34) Selnick, H. G.; Danishefsky, S. J. Tetrahedron Lett. 1987, 28, 49.
(35) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
(36) Schlessinger, R. H.; Poss, M. A.; Richardson, S.; Lin, P. Tetrahedron Lett. 1985, 26, 2391.
(37) For a review of reagent-controlled diastereoselection, see: Masamune, S.; Choy, W.; Peterson, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl. 1985, 24, 1.
(38) Roush, W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, I08, 294.
(39) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293.

Figure 5,
and 29. Separation was difficult at this stage and the mixture was carried further. Hydroxylation with osmium tetroxide was quite selective for the terminal vinyl group. The resultant diol was cleaved with lead tetraacetate. Chromatographic purification of the major aldehyde 30 was now achieved in 66% overall yield. The same compound (NMR and infrared spectral comparisons) was obtained by degradation of avermectin $\mathrm{B}_{1 \mathrm{a}}$ by using a protocol very similar to that developed by Hanessian. The assignment of the $12 S-13 S$ configuration to this substance was thus established.

That compounds 27 and 29 are also threo compounds (i.e., $12 R$ $13 R$) was strongly suggested from the fact that the former was the major product ($27: 26=3: 1$) when the enantiomeric (E)-crotyl boronate $\mathbf{2 5 S}$ was employed. That the ratio of homoallylic alcohols is different starting with the two enantiomeric boronates suggests some small and unexplained bias arising from the resident dissymmetry of 24 .

The final operations on the glucose-derived subunit involved the elongation of $\mathbf{3 0}$ to $\mathbf{3 3}$. One attempt to achieve this involved the use of triphenylformylmethylphosphorane. The reaction was quite slow and only a 40% yield of desired product was realized. In this case the longer route proved to be the more efficient. Reaction of 30 with carbomethoxymethyltriphenylphosphorane afforded 31 in 95% yield. Reduction with DIBAH provided alcohol 32, which after oxidation (95% yield) gave the desired 33. This compound, which was derived from D-glucose (and (R)-tartaric acid as an auxiliary), was to be coupled to a fragment which would be derived from D-ribose (vide infra).

The Synthesis of Tetrahydrofuranone 44, It was the oxahydrindene segment of avermectin which had proven to be most resistant to synthesis. Judging by the literature reports, ${ }^{13}$ previous strategies had contemplated the construction of some version of the oxahydrindene and then its coupling to a relevant unit. This unit already might be attached to the spiroketal moiety or might contain the elements for subsequent attachment.

From the outset we were skeptical about the success of such strategies. The oxahydrindene unit is the most chemically vulnerable region of the molecule. To build a fragment which would be suitable for coupling would require installation of a "coupling-hande" in addition to the target-dictated functionality required of the subunit.

The approach which we found more appealing (though not without its own elements of risk) involved the fashioning of the
oxahydrindene moiety in a setting where the rest of the molecule was already prebuilt. To explore this possibility we settled upon tetrahydrofuranone 44 as a goal system. Given this formulation, the use of D-ribose as a chiral educt virtually suggested itself.
The synthesis of 44 started with aldehyde 34 (Figure 5). ${ }^{40}$ Addition of (E)-trimethylcrotylsilane to 34 under catalysis by $\mathrm{BF}_{3}, \mathrm{OEt}_{2}$ afforded a high yield of a mixture of homoallylic alcohols. It was assumed that the major product was the desired 35. After partial purification at this stage, the material was treated with sodium hydride-methyl iodide. Full purification was now achieved, providing a 68% yield of 36 . At this stage we had no proof of the stereochemistry at C_{4} and C_{5}. The assignment followed from precedents both from our laboratory and from the work of Keck. ${ }^{41}$ The acetonide was cleaved through the action of methanolic HCl to afford 37. Sequential acetonide removal and reduction of the glycoside by the method of Gray gave $38 .{ }^{42}$ Reaction of 38 with α-acetoxypivaloyl bromide ${ }^{43}$ followed by oxirane formation with Amberlite basic resin afforded epoxide 39 in 72% overall yield from 36.

Regiospecific opening of the epoxide was accomplished with lithium triethylborohydride to give (96%) alcohol $\mathbf{4 0}$. Ozonolytic clevage of the double bond followed by reductive workup (Zn ; AcOH) and condensation of the resultant aldehyde with carboxymethyltriphenylphosphorane gave an 84% yield of E enoate 41. Reduction of this compound with DIBAH gave 42, which lent itself to specific protection of the primary alcohol through the action of ${ }^{'} \mathrm{BuMe} 2_{2} \mathrm{SiCl}$-imidazole. Oxidation of $\mathbf{4 3}$ thus obtained afforded the desired 44.

Coupling of Aldehyde 33 with Ketone 44, The opportunity to bring together the glucose-derived aldehyde 33 with the ribosederived ketone 44 was now at hand. The coupling device was to be one of the truly classical reactions in organic chemistry, i.e., the aldol condensation. Nonetheless, it was not without some trepidation that ketone 44 was treated with the lithium salt of

[^6]

Figure 6,
hexamethyldisilazide in THF at $-78^{\circ} \mathrm{C}$. The possibility for β-elimination of the C_{5} methoxy group via enolization toward oxygen could well have undermined the central foundation on which the synthesis was built.

In the event, reaction of the enolate produced from the aforedescribed treatment of 44 with aldehyde 33 afforded an apparent adduct (TLC analysis) (Figure 6). Treatment of this material with methanesulfonyl chloride in triethylamine afforded 45 in 67% yield, Previous experiences had led us to believe that the E geometry would pertain were an allylidenecycloalkanone to be generated in this way. While this surmise could not be proven in the case at hand, the apparent formation of a single product under this treatment was encouraging. The TBS group on the primary alcohol was selectively cleaved by brief exposure of $\mathbf{4 5}$ to the action of HF in aqueous acetonitrile.

The resultant alcohol, $\mathbf{4 6}$, (90% yield) was oxidized with pyridinium chlorochromate to afford enal 47 (88\%) (Figure 7). In a previous disclosure ${ }^{23}$ we have identified a tactic for this type of closure. The strategy draws upon an intramolecular Nozaki reaction. ${ }^{44}$ In practice, compound 47 was treated with the species produced from the reaction of trimethylaluminum with lithium thiophenoxide. After exposure of the resultant product to m chloroperoxybenzoic acid, a 76% yield of enal 48 was realized.

We could now focus on the synthesis of the Δ^{2} isomer of avermectin $A_{l_{a}}$ aglycon. Oxidation of the aldehyde with sodium chlorite produced unsaturated acid 49 and then methyl ester 50. The latter, upon saponification, gave the 13 -silylated conjugated aglycon seco acid 51.

In semisynthetic studies Hanessian had achieved the macrolactonization of a seco acid related to $\mathbf{5 1}$ in modest yield with DCC-DMAP. ${ }^{15}$ In the case at hand, we employed a Mukaiya-ma-type of protocol. ${ }^{45}$ Reaction of 51 with N-methylpyridinium chloride and triethylamine afforded a 67% yield of the 13 -silylated conjugated aglycone 52. Desilylation at the 13 -position was accomplished through reaction of ${ }^{~} \mathrm{Bu}_{4} \mathrm{NF}$ to give the conjugated aglycon 53 (87\%).

The remaining objective was to achieve the deconjugation of the double bond to the Δ^{3} position with installation of the required $2 R$ (i.e., $\mathrm{H}_{2} \beta$) stereochemistry. Indeed, the feasibility of deconjugation had been demonstrated by Hanessian in the context of avermectin $B_{l a}$ by kinetic quenching of the γ-extended lithium enolate. ${ }^{15}$ However, serious questions have been raised about the stereochemistry of the protonation step. Fraser-Reid ${ }^{46}$ has reported that under all conditions which were investigated this protonation gave the epimeric 25 stereochemistry (i.e., $\mathrm{H}_{2}=\alpha$). We investigated this question in connection with the free aglycon 53. Treatment of 53 with 1 equiv of lithium diisopropylamide at -78 ${ }^{\circ} \mathrm{C}$ in tetrahydrofuran followed by quenching with aqueous HCl afforded two isomeric products. The minor one, 21%, was the starting material. The major product was similar to, but different from, the desired aglycon 55 and is formulated as the 2 -epi compound 54. The most notable difference detected in these high-field NMR spectra was found in the appearance of the methylene resonances of the diastereotopic protons at $\mathrm{C}_{8 \mathrm{a}}$. The

[^7]chemical shifts of the resonances of these protons in $\mathbf{5 5}$ are more closely spaced ($\delta=4.70$ and 4.64) than in the 2 -epi compound 54 ($\delta=4.60$ and 4.18).

During this work, Professor Hanessian ${ }^{16}$ described a new procedure involving the use of imidazole as the base for purposes of epimerization of 2-epiavermectin $B_{1 a}$ with the natural product itself. It seemed that with this base, substantial equilibration of the C_{2} stereoisomers could be achieved before both compounds were isomerized to the more stable conjugated Δ^{2} isomer bearing the 4β-methyl group.

We then investigated the use of imidazole catalysis for equilibration of the aglycons. In the event, treatment of 54 with imidazole furnished an 87% yield of a three-component mixture. A 21% yield of conjugated 53 was produced. Also obtained was a 33% recovery of the 2 -epi Δ^{3} compound 54 . Most important was the 32% yield of the long sought after avermectin $A_{\text {la }}$ aglycon 55. The infrared and NMR spectra, as well as chromatographic mobility of 55 , were identical with a sample prepared by cleavage of the L -oleandrosyl- L -oleandrose residue from avermectin $A_{1_{\mathrm{a}}} .{ }^{47}$ A fully synthetic route to the aglycon 55 was thus achieved.

Having reached the aglycon 55 , we focused on achieving the total synthesis of avermectin $A_{1 a}$ itself. To accomplish this goal, it would be necessary to synthesize a suitable version of the disaccharide L-oleandrosyl-L-oleandrose and to append it to the aglycon. In semisynthetic work in the avermectin B_{1} series, Nicolaou had achieved the conversion of L-rhamnose to disaccharides 56a and \mathbf{b} (Figure 8). ${ }^{17}$ Furthermore, these disaccharides were joined to the $B_{1 a}$ aglycon to achieve, eventually, a partial synthesis of avermectin $B_{1 a}$ itself. In his degradative studies on avermectin B_{la}, Hanessian devised a sequence to retrieve disaccharide 56 c from the natural product. ${ }^{48}$ Our early efforts in this phase of the synthesis involved obtaining $\mathbf{5 6 c}$, as described by Hanessian, from avermectin $\mathrm{B}_{1 \mathrm{a}}$. We subsequently found that we could carry out the Nicolaou coupling to join $\mathbf{5 6 c}$ to aglycon 55.

However, our real interests were in the domain of total synthesis. As such, we set several goals for ourselves. We hoped to achieve a synthetic route to the L-oleandrose (57) series from non-carbohydrate sources. We further hoped to join two monosaccharides related to 57 to produce, eventually, a disccharide which could be joined to aglycon 55 , now available by total synthesis. After appropriate functional group modification, a fully synthetic route to 1 could be achieved.

L-Oleandral 61 was identified as a potentially valuable intermediate. It is noted that in a general sense there is a strong relationship in the requirements for converting glycal 61 to 66 and for converting 66 to 1 . In each instance axial addition of a complex alcohol at the 1 -position of a glycal must be achieved with eventual conversion to a 2-deoxy axial glycosidic product.

As it turns out, we had already developed a technology to synthesize rare monosaccharides including the L-dihydropyrone 58 (Figure 9). ${ }^{24}$ Reduction of the ketone with sodium borohydride $-\mathrm{CeCl}_{3}{ }^{32}$ afforded 59 in 92% yield. Methylation of this compound with silver oxide-methyl iodide gave the desired C_{3}-methoxy compound $\mathbf{6 0}$. Hydrolysis of the acetate gave a nearly quantitative yield of L-oleandral 61.

It was now necessary to protect the glycal double bond of the nucleophilic component entering into the disaccharide synthesis. Treatment of 61 with N-bromosuccinimide in methanol followed by reaction with tri- n-butyltin hydride afforded a 95% yield of a $2: 1 \alpha-\beta$ mixture of methyl glycosides $62 .{ }^{49} \quad$ Each of these anomers behaved equally well in the coupling reaction with 60 .

Treatment of 60 with N-iodosuccinimide in acetonitrile, ${ }^{50}$ followed by reaction of the complex thus generated with axial methyl glycoside 62 , afforded a 63% yield of the iododissaccharide

[^8]

Figure 7,

Figure 8.
63. For a given methyl glycoside version of 62 , a single version of $\mathbf{6 3}$ is produced. The disaccharide product seems to arise cleanly from a trans-diaxial addition. ${ }^{51}$ With a view to preparing for the new glycal linkage required for eventual coupling to avermectin aglycon, the iododisaccharide was treated with (trimethylsilyl)thiophenol in the presence of zinc iodide. ${ }^{52}$ The resultant 64 (82%) was converted to its sulfoxide (MCPBA), which upon pyrolysis in benzene provided iodoglycal 65 in 72% yield. The target disaccharide, 66, was then obtained (81\%) by reaction of 65 with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$ in toluene.

The stage was now set for the all-critical coupling reaction between fully synthetic 55 and fully synthetic 66 (Figure 10). This coupling was also carried out under the agency of N-iodosuccinimide. ${ }^{50,51}$ A 64% yield of the $\mathrm{C}_{4^{\prime \prime}}$ acetate of $\mathrm{C}_{2^{\prime}} \beta$-iodoavermectin $A_{1 a}$ derivative 67 was obtained. The iodine function was reductively cleaved with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$, affording a 78% yield of compound 68 , the $\mathrm{C}_{4^{\prime}}$ acetate of $\mathbf{1}$. The last challenge involved deacylation of this acetate without perturbing the lactonic acyl

[^9]function. This was smoothly accomplished (97\%) with SuperHydride. There was thus obtained by total synthesis avermectin $\mathrm{A}_{1 \mathrm{a}}$.

Summary

Given the ready availability of the avermectins from natural sources and the multistep nature of any total synthesis program, it was never our perception that synthesis would be of any relevance to the target aglycon system itself. The value of the effort would rest on the chemical issues raised in the key steps (see Figure 2 , eq 1-6). Fortunately, all of these issues lent themselves to favorable disposition. Given the retrievability of the aglycon and the disaccharide components from the natural products by various protocols, it is also unlikely that total synthesis is likely to be of consequence with respect to the natural subunits.

However, as a consequence of these and our earlier studies, ${ }^{2,3}$ virtually complete latitude in the synthesis of novel saccharides is now a reality. From the results described above, practical methodology for appending such saccharides, via their glycals, to the aglycons is now available. These synthetic studies have, therefore, enormously increased the range of hitherto inaccessible congeners of avermectin in a region of the molecule which is particularly sensitive to structural variation. Hence, these studies pursued at the outset from strictly chemical considerations may not be without practical consequence.

Experimental Section

[$2 R$-[2 $\left.\left.2,3 \beta, 6 \beta\left(R^{*}\right)\right]\right]-[3-(2,2-D i m e t h y l-1-o x o p r o p o x y)-3,4-d i h y d r o-~$ 6-(1-methyl-2-propenyl)-2H-pyran-2-yl]methyl 2,2-Dimethylpropanoate (4), To a solution of $3.0 \mathrm{~mL}(24.32 \mathrm{mmol})$ of $\mathrm{BF}_{3}, \mathrm{OEt}_{2}$ in 30 mL of propionitrile at $-30^{\circ} \mathrm{C}$ was added a solution of $2(9.6 \mathrm{~g}, 24.32 \mathrm{mmol})$ and $3(7.64 \mathrm{gm}, 24.32 \mathrm{mmol})$ in 100 mL of propionitrile dropwise. The reaction was stirred until no starting material remained and was then quenched with saturated NaHCO_{3}. The reaction mixture was then extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 15% ethyl acetate in hexanes) provided $7.7 \mathrm{~g}(90 \%)$ of a $4.5: 1$ mixture of isomers. This mixture was then chromatographed on silver nitrate impregnated SiO_{2} (elution with 20% ethyl acetate in hexanes) to provide $6.16 \mathrm{~g}(73 \%)$ of dihydropyran 4: $[\alpha]^{25}{ }_{\mathrm{D}}+106.6^{\circ}\left(\mathrm{c} 2.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3000,1740,1480,1430$, $1150,1130 \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.98$ (br d, $1 \mathrm{H}, J=10.40$

Figure 9,

Figure 10,
$\mathrm{Hz}), 5.78(\mathrm{~d}, 1 \mathrm{H}, J=10.40 \mathrm{~Hz}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~d}, 1 \mathrm{H}, J=15.08$ $\mathrm{Hz}), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=10.22 \mathrm{~Hz}), 5.02(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=3.6$ $\mathrm{Hz}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}$, $9 \mathrm{H}), 1.12(\mathrm{~d}, 3 \mathrm{H}, J=6.86 \mathrm{~Hz}) ; \mathrm{MS}(20 \mathrm{eV}) 352\left(\mathrm{M}^{+}\right), 297\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{3} \mathrm{CHCHCH}_{2}$). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5}: \mathrm{C}, 68.14 ; \mathrm{H}, 9.17$. Found: C, 68.07; H, 9.14 .
[2R-[2 $\left.\left.\alpha, 3 \beta, 6 \beta\left(S^{*}\right)\right]\right]-[3-(2,2-D i m e t h y l-1-o x o p r o p o x y)-3,4-d i h y d r o-$ 6-(1-methylpropyl)-2H-pyran-2-yl]methyl 2,2-Dimethylpropanoate (5), A solution of $5.14 \mathrm{~g}(14.6 \mathrm{mmol})$ of 4 in 131 mL of MeOH with 14.6 mL of pyridine and 4 g of Pd / C was stirred over a H_{2} balloon for 45 min . The H_{2} was then removed from the system and the reaction was then filtered through Celite and concentrated. Flash chromatography (10% ethyl acetate in hexanes) provided $4.65 \mathrm{~g}(90 \%)$ of $5:[\alpha]^{25} \mathrm{D}+71.90^{\circ}$ (c $2.00, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 2970,1730,1480,1285,1150 \mathrm{~cm}^{-1}$; NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.96$ (ddd, $1 \mathrm{H}, J=10.50,1.02,1.02 \mathrm{~Hz}$), 5.85 (ddd, $1 \mathrm{H}, J=10.50,3.80,1.99 \mathrm{~Hz}$), $4.95(\mathrm{~m}, 1 \mathrm{H}), 4.25$ (dd, $1 \mathrm{H}, J$ $=11.60,8.13 \mathrm{~Hz}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=11.60,3.37 \mathrm{~Hz}), 4.05(\mathrm{dd}, 1 \mathrm{H}$, $J=7.60,3.80 \mathrm{~Hz}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.4(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.21$ $(\mathrm{s}, 9 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.35), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=6.63 \mathrm{~Hz})$; MS $(20$ $\mathrm{eV}) 297\left(\mathrm{M}^{+}-\mathrm{T} \mathrm{Bu}\right) 195\left(\mathrm{M}^{+}-\mathrm{T} \mathrm{Bu}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}_{2} \mathrm{H}\right)$.
[2S-[2 $\left.\left.\alpha, 5 \alpha, 6 \beta\left(R^{*}\right)\right]\right]-[5,6$-Dihydro-5-methyl-6-(1-methylpropyl)-2H-pyran-2-yl]methyl 2,2-Dimethylpropanoate (6), To CuI ($8.18 \mathrm{~g}, 42.92$ mmol) in 275 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ under argon was added 61 mL (85.84 mmol) of MeLi . The cuprate was then added very slowly, over a period of 5 h , to $5(3.8 \mathrm{~g}, 10.73 \mathrm{mmol})$, in 350 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $-40^{\circ} \mathrm{C}$. The reaction was allowed to stir 15 more hours and was then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with ether three times. The organic layer was dried over MgSO_{4} and concentrated. Flash chromatography (eluted with 10% ethyl acetate in hexanes) yielded 2.12 g (73%) of 6: $[\alpha]^{25} \mathrm{D}-15.16^{\circ}\left(\mathrm{c} 2.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2970,1730,1480$, $1460,1285,1160 \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.78$ (ddd, $1 \mathrm{H}, J$ $=10.20,2.17,2.17 \mathrm{~Hz}), 5.60(\mathrm{ddd}, 1 \mathrm{H}, J=10.20,2.60,2.60 \mathrm{~Hz}), 440$
$(\mathrm{m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, 1 \mathrm{H}, J=11.57,7.71 \mathrm{~Hz}), 3.97(\mathrm{dd}, 1 \mathrm{H}, J=11.57$, 3.41 Hz), 3.24 (dd, $1 \mathrm{H}, J=8.33,2.95 \mathrm{~Hz}$), $2.30(\mathrm{~m}, 1 \mathrm{H}), 1.6(\mathrm{~m}, 1$ H), $1.40(\mathrm{dq}, 2 \mathrm{H}, J=13.45,7.35 \mathrm{~Hz}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J$ $=7.35 \mathrm{~Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=7.17 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.74 \mathrm{~Hz})$; MS $(20 \mathrm{eV}) 269\left(\mathrm{M}^{+}-1\right), 211\left(\mathrm{M}^{+}-1-{ }^{\mathrm{t}} \mathrm{Bu}\right), 153\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{CC}\right.$. $\left.\left(\mathrm{CH}_{3}\right)_{3}\right)$.
[2R-[2 $\left.\left.\alpha, 5 \alpha, 6 \beta\left(S^{*}\right)\right]\right]-5,6$-Dihydro-5-methyl-6-(1-methylpropyl)-2H-pyran-2-acetaldehyde (10), To $2 \mathrm{~g}(7.4 \mathrm{mmol})$ of 6 in 15 mL each of THF, $\mathrm{H}_{2} \mathrm{O}$, and MeOH was added $3.63 \mathrm{~g}(74 \mathrm{mmol})$ of $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$. The reaction was stirred overnight at room temperature at which time it was saturated with solid NaCl and extracted with ether. Flash chromatography with $5 \% \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded $1.12 \mathrm{~g}(82 \%)$ of alcohol 7. Analytical data: $[\alpha]^{25}{ }_{\mathrm{D}}+43.10^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3400$, $2930,1460,1380,1040 \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74$ (ddd, 1 $\mathrm{H}, J=10.22,2.23,2.23 \mathrm{~Hz}$), 5.56 (ddd, $1 \mathrm{H}, J=10.22,2.68,2.44 \mathrm{~Hz}$), $4.25(\mathrm{~m}, 1 \mathrm{H}), 3.65$ (ddd, $1 \mathrm{H}, J=11.43,9.05,2.30 \mathrm{~Hz}$), 3.5 (ddd, 1 $\mathrm{H}, J=11.43,9.8,3.52 \mathrm{~Hz}$), 3.2 (dd, $1 \mathrm{H}, J=8.11,3.22 \mathrm{~Hz}), 2.31(\mathrm{~m}$, $1 \mathrm{H}), 2.07(\mathrm{dd}, 1 \mathrm{H}, J=8.11,3.22 \mathrm{~Hz}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.4(\mathrm{dq}, 2 \mathrm{H}$, $J=15.28,7.50 \mathrm{~Hz}), 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.50 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=7.40$ Hz), $0.91\left(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}\right.$); MS $(20 \mathrm{eV}) 184\left(\mathrm{M}^{+}\right), 153$ (base peak $\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}$); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2}$ 184.1464, found 184.1560.

To a solution of alcohol $7(800 \mathrm{mg}, 4.35 \mathrm{mmol})$ in 17.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-25^{\circ} \mathrm{C}$ were added $421 \mu \mathrm{~L}(5.22 \mathrm{mmol})$ of pyridine and then $804 \mu \mathrm{~L}$ (4.79 mmol) of triflic anhydride. The reaction was stirred for 20 min and then warmed to $0^{\circ} \mathrm{C}$ for 10 min when it was diluted with ether, poured onto ice-cold $5 \% \mathrm{HCl}$, and washed with $\mathrm{H}_{2} \mathrm{O}$ and then with saturated NaHCO_{3} and brine. The reaction was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The unstable triflate 8 was then immediately dissolved in 12 mL of dry DMF, and $852 \mathrm{mg}(17.4 \mathrm{mmol})$ of NaCN was added. The resulting mixture was stirred overnight and then diluted with ether, washed with saturated NaHCO 3 , dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 20% ether in hexanes) provided 688 $\mathrm{mg}(82 \%)$ of nitrile $9:[\alpha]_{\mathrm{D}}^{25}+25.96^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 2930, 2250, 1460, 1380, $1110,1100,1075 \mathrm{~cm}^{-1}$; NMR (250 MHz , CDCl_{3}) $\delta 5.82$ (ddd, $1 \mathrm{H}, J=10.15,2.16,2.06 \mathrm{~Hz}$), 5.69 (ddd, $1 \mathrm{H}, J$ $=10.15,2.67,2.30 \mathrm{~Hz}), 4.5(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, 1 \mathrm{H}, J=8.19,3.10 \mathrm{~Hz})$, $2.60(\mathrm{dd}, 1 \mathrm{H}, J=17.10,7.34 \mathrm{~Hz}), 2.50(\mathrm{dd}, 1 \mathrm{H}, J=17.10,5.90 \mathrm{~Hz})$, $2.3(\mathrm{~m}, 1 \mathrm{H}), \mathrm{l} .62(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{dq}, 2 \mathrm{H}, J=13.56,7.3 \mathrm{~Hz}), 0.95(\mathrm{~d}$, $3 \mathrm{H}, J=7.12 \mathrm{~Hz}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.30 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.66$ Hz); MS $(20 \mathrm{eV}) 194\left(\mathrm{M}^{+}+1\right), 153\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CN}\right)$. The nitrile $9(688$ $\mathrm{mg}, 3.56 \mathrm{mmol}$) was dissolved in 35 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $-25^{\circ} \mathrm{C}$. Dibal (4.63 $\mathrm{mL}, 4.63 \mathrm{mmol}$) was added and the reaction was stirred for 1 h . The mixture was then quenched with acetone, Rochelle's salt, and SiO_{2} and stirred for 1 h . The resulting mixture was then extracted three times with ether, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 20% ether in hexanes) provided 629 mg (90%) of aldehyde 10: $[\alpha]^{25}{ }_{\mathrm{D}}+26.81^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 2970,1720,1460,1380$ $\mathrm{cm}^{-1} ; \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{dd}, 1 \mathrm{H}, J=3.10,1.83 \mathrm{~Hz}), 5.68$ (m, 2 H), $4.75(\mathrm{~m}, 1 \mathrm{H}), 3.14$ (dd, $1 \mathrm{H}, J=8.11,3.23 \mathrm{~Hz}$), 2.73 (ddd, $1 \mathrm{H}, J=16.14,9.22,3.10 \mathrm{~Hz}$), 2.48 (dddd, $1 \mathrm{H}, 16.14,4.50,1.83,0.62$ $\mathrm{Hz}), 2.3(\mathrm{~m}, 1 \mathrm{H}), 1.6(\mathrm{~m}, 1 \mathrm{H}), 1.3(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.99$ $\mathrm{Hz}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.08 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.75 \mathrm{~Hz})$; MS (20 eV) $196\left(\mathrm{M}^{+}\right), 153\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CHO}\right)$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ 196.1464, found 196.1456.
[2R-[2 $\left.\left.\alpha\left(R^{*}\right), 5 \alpha, 6 \beta\left(S^{*}\right)\right]\right]-2-[[5,6-D i h y d r o-5-m e t h y l-6-(1-m e t h y I-$ propyl)-2H-pyran-2-yl]methyl]-2,3-dihydro-4H-pyran-4-one (12), To a solution of aldehyde $10(679 \mathrm{mgs}, 3.46 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added $4.85 \mathrm{~mL}(4.85 \mathrm{mmol}, 1 \mathrm{M})$ of $\mathrm{MgBr}_{2}, \mathrm{OEt}_{2}$. The solution was stirred 15 min and then the diene $11(1.35 \mathrm{~mL}, 6.72 \mathrm{mmol})$ was added dropwise. The reaction was stirred for 30 min more and was then quenched with saturated NaHCO_{3}. The mixture was then extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated. This was then dissolved in CCl_{4} and a few drops of TFA were added. After 15 $m i n$ the reaction mixture was concentrated and then flash chromatographed (elution with 20% ethyl acetate in hexanes). This provided 700 $\mathrm{mg}(77 \%)$ of pyrone 12 and its C_{19} epimer in a $4: 1$ ratio: IR $\left(\mathrm{CHCl}_{3}\right)$ $2960,1680,1400,1275 \mathrm{~cm}^{-1}$; NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{dd}, 1$ $\mathrm{H}, J=5.95,2.90 \mathrm{~Hz}), 5.65(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{dd}, 1 \mathrm{H}, J=5.95,1.05 \mathrm{~Hz})$, $4.68(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 0.8 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{dd}, 0.2 \mathrm{H}, J=8.13$, 3.09 Hz), 3.08 (dd, $0.8 \mathrm{H}, J=8.26,3.01 \mathrm{~Hz}$), 2.56 (dd, $1 \mathrm{H}, J=13.14$, 16.80 Hz), 2.42 (ddd, $1 \mathrm{H}, J=16.80,4.32,1.02 \mathrm{~Hz}$), $2.28(\mathrm{~m}, 1 \mathrm{H}), 1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.6(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.00 \mathrm{~Hz}), 0.9 \mathrm{l}$ $(\mathrm{d}, 3 \mathrm{H}, J=6.87 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.62 \mathrm{~Hz}) ; \mathrm{MS}(20 \mathrm{eV}) 264$ $\left(\mathrm{M}^{+}\right), 178\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3}$ 264.1726, found 264.1714.
[2R-[2 $\left.\left.\alpha(2 S, 4 S), 5 \alpha, 6 \beta\left(S^{*}\right)\right]\right]-3,4$-Dihydro-2-[[5,6-dihydro-5-methyl-6-(1-methylpropyl)-2 H -pyran-2-yl]methyl]-2 H -pyran-4-ol tert-Butyldimethylsilyl Ether (14), To a solution of pyrone $12(450 \mathrm{mgs}, 1.7 \mathrm{mmol})$ in 9 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 9 mL of EtOH was added $761 \mathrm{mg}(2.04 \mathrm{mmol})$ of $\mathrm{CeCl}_{3}, 7 \mathrm{H}_{2} \mathrm{O}$. The mixture was stirred 15 min at room temperature
and then cooled to $-78{ }^{\circ} \mathrm{C}$. $\mathrm{NaBH}_{4}(65 \mathrm{mg}, 1.7 \mathrm{mmol})$ in 1.7 mL of EtOH was then added to the reaction over 1 h . The reaction was then quenched with saturated NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated. The readily separable mixture of glycals was then flash chromatographed (elution with 7.5% ethyl acetate in methylene chloride) to provide 284 mg (63%) of glycal 13: $[\alpha]^{25}{ }_{\mathrm{D}}+5.14^{\circ}$ (c $2.00, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 3350,2960,1645,1240,1180 \mathrm{~cm}^{-1} ; \mathrm{NMR}$ $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.37(\mathrm{dd}, 1 \mathrm{H}, J=6.20,1.17 \mathrm{~Hz}), 5.62(\mathrm{~s}, 2 \mathrm{H})$, $4.76(\mathrm{dt}, 1 \mathrm{H}, J=6.20,2.00 \mathrm{~Hz}), 4.41$, (br m, 3 H$), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.10$ (dd, $1 \mathrm{H}, J=8.09,3.22 \mathrm{~Hz}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.20$ $(\mathrm{m}, 6 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.45 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=7.07 \mathrm{~Hz}), 0.90$ (d, $3 \mathrm{H}, J=6.83 \mathrm{~Hz}$); MS (20 eV) $266\left(\mathrm{M}^{+}\right)$

The glycal 13 ($284 \mathrm{mg}, 1.07 \mathrm{mmol}$) was immediately dissolved in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. Lutidine ($1.24 \mathrm{~mL}, 10.7 \mathrm{mmol}$) and TBSOTf $(368 \mu \mathrm{~L}, 1.60 \mathrm{mmol})$ were then added and the reaction was stirred 30 min. It was then quenched with saturated NaHCO 3 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 5% ethyl acetate in hexanes) provided 353 mg (87%) of $\mathbf{1 4}$ $[\alpha]^{25} \mathrm{D}-29.11^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 2960,1645,1250,1085$ cm^{-1}; NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.32(\mathrm{dd}, 1 \mathrm{H}, J=6.23,1.16 \mathrm{~Hz}), 5.62$ ($\mathrm{s}, 2 \mathrm{H}$), $4.66(\mathrm{dt}, 1 \mathrm{H}, J=6.23,1.89 \mathrm{~Hz}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~m}, 1$ $\mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J=3.23,8.06 \mathrm{~Hz}), 2.27(\mathrm{~m}, 1 \mathrm{H})$, $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.2(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=6.83$ $\mathrm{Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.76 \mathrm{~Hz}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}) ; \mathrm{MS}(20 \mathrm{eV}) 380\left(\mathrm{M}^{+}\right), 323\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}\right), 248\left(\mathrm{M}^{+}-\right.$ TBSOH). Anal. Found; C, 69.54; H, 10.58

Lactol 15, To a solution of $14(113 \mathrm{mg}, 0.321 \mathrm{mmol})$ in 4 mL of THF with 0.5 mL of saturated NaHCO_{3} was added $113.9 \mathrm{mg}(0.64 \mathrm{mmol})$ of NBS. After 10 min , the reaction was complete and more saturated $\mathrm{NaHCO} \mathrm{H}_{3}$ was added, and the mixture was extracted with ethyl acetate. Flash chromatography (elution with 8% ethyl acetate in hexanes) provided $109 \mathrm{mg}(76 \%)$ of a mixture of bromohydrins, which were immediately dissolved in 4 mL of toluene with 109 mg (0.315 mmol) of $\mathrm{Ph}_{3} \mathrm{SnH}$ and catalytic AIBN. The mixture was refluxed for 30 min whereupon it was concentrated and flash chromatographed (elution with 15% ethyl acetate in hexanes) to yield 83 mg (93%) of hemiacetal 15 : $[\alpha]^{25}{ }_{\mathrm{D}}+35.55^{\circ}\left(c 2.00, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3410,2980,1470,1390$, 1265, 1130, $1095 \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.6(\mathrm{~s}, 1 \mathrm{H}), 5.4(\mathrm{br}$ $\mathrm{s}, 7 / 8 \mathrm{H}), 4.75(\mathrm{~m}, 1 / 8 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H})$, 2.90 (br s, 1 H$), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.2(\mathrm{~m}, 8 \mathrm{H}), 0.93$ $(\mathrm{t}, 3 \mathrm{H}, J=7.34 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J=6.03 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.89$ $(\mathrm{d}, 3 \mathrm{H}, J=6.76 \mathrm{~Hz}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(20 \mathrm{eV}) 380\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{H}_{2} \mathrm{O}\right), 323\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$; HRMS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 399.2932$, found 399.2906 .

Diol 16, To $130 \mathrm{mg}(0.351 \mathrm{mmol})$ of hemiacetal 15 in 4 mL of THF was added LiBH_{4} ($31 \mathrm{mg}, 1.40 \mathrm{mmol}$). The reaction was refluxed for 1 h and then quenched with acetone, followed by saturated $\mathrm{NaHCO} \mathrm{H}_{3}$. The solution was then extracted with ethyl acetate, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 25% to 40% ethyl acetate in hexanes) gave 122 mg (93\%) of diol 16: $[\alpha]^{25} \mathrm{D}+21.79^{\circ}$ (c $\left.2.35, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3400,2950,1460,1380,1255,1070 \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.62(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{brd}, 1 \mathrm{H}), 4.13(\mathrm{~m}$, $1 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{brs}, 1 \mathrm{H}), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=7.00,4.15 \mathrm{~Hz})$, $2.25(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.8-15(\mathrm{~m}, 6 \mathrm{H}), 1.5-1.2(\mathrm{~m}, 2 \mathrm{H}), 0.945$ $(\mathrm{d}, 3 \mathrm{H}, J=7.12 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.09 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J=7.09$ $\mathrm{Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H})$; MS (20 eV), $m / z 400\left(\mathrm{M}^{+}\right), 343\left(\mathrm{M}^{+}\right.$ $\left.-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 250\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{TBSOH}\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}$ $(+$ H) 401,3088, found 401.3085.
$\left[1 R-\left[1 \alpha\left(1 R^{*}, 4 R^{*}\right), 5 \alpha, 6 \beta\left(S^{*}\right)\right]\right]-1-[5,6-D i h y d r o-5-m e t h y l-6-(1-$ methylpropyl)-2H-pyran-2-yl]-4-hydroxy-6-(2,2-dimethyl-1-oxopropoxy) hex-2-yl 2,2-Dimethylpropanoate. To a solution of diol $16(122 \mathrm{mg}$, 0.305 mmol) in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathrm{PvCl}(100 \mu \mathrm{~L}, 0.763 \mathrm{mmol})$, triethylamine ($130 \mu \mathrm{~L}, 0.915 \mathrm{mmol}$), and DMAP ($20 \mathrm{mg}, 0.153 \mathrm{mmol}$). After 24 h the reaction was complete. Concentration followed by flash chromatography (elution with 10% ethyl acetate in hexanes) provided $285 \mathrm{mg}(89 \%)$ of $17:[\alpha]^{25}{ }_{\mathrm{D}}+12.48^{\circ}\left(c 1.65, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2970$, $1730,1480,1460,1285,1165 \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.6(\mathrm{~s}$, $2 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{dd}, 1 \mathrm{H}, J=$ $7.91,3.14 \mathrm{~Hz}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.25(\mathrm{~m}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 18 \mathrm{H}), 0.89$ (s, 9 H), $0.88(\mathrm{~m}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$; MS (20 eV), 409 $\left(\mathrm{M}^{+}-\mathrm{PvOH}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 334\left(\mathrm{M}^{+}-\mathrm{PvOH}-\mathrm{TBSOH}\right)$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{Si}(+\mathrm{H}) 569.4239$, found 569.4240 .

To a solution of $179 \mathrm{mg}(0.33 \mathrm{mmol})$ of 17 in 3 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added 20 drops of $5 \% \mathrm{HF}$ in $\mathrm{CH}_{3} \mathrm{CN}$. After 2 h no starting material remained. The reaction was quenched with saturated $\mathrm{NaHCO} \mathrm{H}_{3}$, extracted with ethyl acetate, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 10% ethyl acetate in hexanes) yielded 122 mg (87%) of alcohol 18: $[\alpha]^{25}{ }_{\mathrm{D}}+31.57^{\circ}\left(c 3.00, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ $3500,2960,2930,1730,1285,1170 \mathrm{~cm}^{-1}$; NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.62(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{brd}, 1 \mathrm{H}, J=3.41$
$\mathrm{Hz}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, 1 \mathrm{H}, J=8.25,2.72 \mathrm{~Hz}), 2.14(\mathrm{~m}, 1 \mathrm{H})$, $1.9-1.3(\mathrm{~m}, 8 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J=7.05$ $\mathrm{Hz}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.33 \mathrm{~Hz}), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.66 \mathrm{~Hz})$; MS (20 eV) $352\left(\mathrm{M}^{+}-\mathrm{PvOH}\right), 334\left(\mathrm{M}^{+}-\mathrm{PvOH}-\mathrm{H}_{2} \mathrm{O}\right), 250\left(\mathrm{M}^{+}-2 \mathrm{PvOH}\right)$, $232\left(\mathrm{M}^{+}-2 \mathrm{PvOH}-\mathrm{H}_{2} \mathrm{O}\right)$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{O}_{6}(+\mathrm{H}) 455.3374$, found 455.3366 .
[2S-[2 $\left.\left.\alpha, 6 \beta\left[8 S^{*}\left(R^{*}\right), 9 R^{*}\right]\right]\right]-9-M e t h y l-8-(1-m e t h y l p r o p y l)-2-[(2,2-d i-$ methyl-1-oxopropoxy)ethyl]-4-(2,2-dimethyl-1-oxopropoxy)-1,7-dioxa-spiro[5.5]undec-10-ene (19), A solution of $\mathrm{HgO}(180 \mathrm{mg}, 0.845 \mathrm{mmol})$ and $\mathrm{I}_{2}(214 \mathrm{mg}, 0.845 \mathrm{mmol})$ in 25 mL of CCl_{4} was stirred for 10 min . Alcohol 18 ($180 \mathrm{mg}, 0.422 \mathrm{mmol}$) in 2 mL of CCl_{4} was then added. The reaction was stirred at roèm temperature under a $275-\mathrm{W}$ light. After 1.5 h the reaction was quenched with saturated $\mathrm{NaS}_{2} \mathrm{O}_{5}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Flash chromatography (elution with 20% hexanes in methylene chloride) provided spiroketal $19(95 \mathrm{mg}, 53 \%)$: $[\alpha]^{25}{ }_{\mathrm{D}}$ $+81.30^{\circ}\left(c 1.60, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 2960,1730,1285,1155 \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74$ (dd, $\mathrm{I} \mathrm{H}, J=9.94,1.81 \mathrm{~Hz}$), 5.55 (dd, $1 \mathrm{H}, J=9.94,2.57 \mathrm{~Hz}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 4.2(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H})$, $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dd}, 1 \mathrm{H}, J=9.91,1.72 \mathrm{~Hz}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 2.1-1.7$ (m, 4 H), 1.55-1.22 (m, 5 H), 1.19 (s, 9 H), 1.18 ($\mathrm{s}, 9 \mathrm{H}$), 0.95 (d, 3 $\mathrm{H}, J=7.43), 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.60 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.61 \mathrm{~Hz}) ;$ MS (20 eV), $366\left(\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right) \mathrm{CHO}\right), 350\left(\mathrm{M}^{+}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}\right), 264\left(\mathrm{M}^{+}-\mathrm{PvOH}-\mathrm{Pv}\right) ;$ HRMS CI calcd for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{O}_{6}$ $\left(\mathrm{M}^{+}+\mathrm{H}\right) 453.3217$, found 453.3236 .
[2S-[2 $\left.\left.\alpha, 4 \alpha, 6 \beta\left[8 S^{*}\left(R^{*}\right), 9 R^{*}\right]\right]\right]-9-M e t h y l-8-(1-m e t h y l p r o p y l)-2-(2-$ oxoethyl)-4-(2,2-dimethyl-1-oxopropoxy)-1,7-dioxaspiro $[5,5$]undec-10-ene (22), To a solution of spiroketal $19(104 \mathrm{mg}, 0.23 \mathrm{mmol})$ in 5 mL of THF at $-78{ }^{\circ} \mathrm{C}$ was added Super. Hydride ($920 \mu \mathrm{~L}, 0.92 \mathrm{mmol}, 1 \mathrm{M}$). After stirring for 1 h the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with ethyl acetate, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 20% ethyl acetate in hexanes) provided 66 mg (78\%) of alcohol 21: $[\alpha]^{25}{ }_{\mathrm{D}}+99.26^{\circ}\left(c 2.17, \mathrm{CHCl}_{3}\right)$; IR (neat) $3600-3200,2962,2939,2880,1731,1288,1160,1000 \mathrm{~cm}^{-1}$; NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.69(\mathrm{dd}, 1 \mathrm{H}, J=9.90,1.72 \mathrm{~Hz}), 5.51(\mathrm{dd}, 1 \mathrm{H}, J=$ 9.0, 2.45 Hz), $5.19-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}$, $2 \mathrm{H}), 3.33(\mathrm{dd}, 1 \mathrm{H}, J=9.89,1.54 \mathrm{~Hz}), 2.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}$, $1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.4(\mathrm{~m}, 3 \mathrm{H})$, $1.36-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.26 \mathrm{~Hz}), 0.88(\mathrm{~d}$, $3 \mathrm{H}, J=7.12 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3 \mathrm{H}, J=6.65 \mathrm{~Hz})$; MS (20 eV) $266\left(\mathrm{M}^{+}\right.$ $\left.-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}\right), 180\left(266-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right.$, base peak). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{5}: \mathrm{C}, 68.44 ; \mathrm{H}, 9.85$. Found: $\mathrm{C}, 68.35 ; \mathrm{H}, 9.90$.

To a solution of $120 \mu \mathrm{~L}(1.38 \mathrm{mmol})$ of oxalyl chloride in 1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ was added $196 \mu \mathrm{~L}(2.76 \mathrm{mmol})$ of dimethyl sulfoxide. The resulting solution was allowed to stir at $-78^{\circ} \mathrm{C}$ for 5 min at which time $340 \mathrm{mg}(0.92 \mathrm{mmol})$ of alcohol 21 was added in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring at $-78^{\circ} \mathrm{C}$ for $45 \mathrm{~min}, 643 \mu \mathrm{~L}(4.61 \mathrm{mmol})$ of triethylamine was added and the reaction mixture was warmed to 0 ${ }^{\circ} \mathrm{C}$ and stirred for 30 min . The solution was then poured into pH 7.0 buffer, extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 1:5 ether-hexanes) afforded 308 mg (91%) of the aldehyde 22, homogeneous by TLC and spectroscopic analysis: $[\alpha]^{25}{ }_{\mathrm{D}}+76.47^{\circ}\left(c 2.21, \mathrm{CHCl}_{3}\right)$; IR (neat) $2985,2938,1730$ 1388, 1289, 1152, 982, cm^{-1}; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{t}, 1 \mathrm{H}$, $J=1.85 \mathrm{~Hz}), 5.73(\mathrm{dd}, 1 \mathrm{H}, J=9.91,1.73 \mathrm{~Hz}), 5.53(\mathrm{dd}, 1 \mathrm{H}, J=9.91$, 2.63 Hz), $5.24-5.18(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, 1 \mathrm{H}, J=$ $9.97,1.47 \mathrm{~Hz}$), 2.61 (ddd, $1 \mathrm{H}, J=16.30,8.34,2.65 \mathrm{~Hz}$), 2.49 (ddd, 1 $\mathrm{H}, J=16.30,4.39,1.85 \mathrm{~Hz}), 2.26-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 2 \mathrm{H})$, $1.61-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, 3 \mathrm{H}, J$ $=7.52 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=7.13 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.74 \mathrm{~Hz})$; MS $(20 \mathrm{eV}) 178\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right.$ base peak). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5}: \mathrm{C}, 68.08 ; \mathrm{H}, 9.25$. Found: $\mathrm{C}, 67.60 ; \mathrm{H}, 9.68$.
[2R-[2 $\left.\left.\alpha(E), 4 \alpha, 6 \beta\left[8 R^{*}\left(S^{*}\right), 9 S^{*}\right]\right]\right]-9-M e t h y l-2$-(3-methyl-4-oxo-2-butenyl)-8-(1-methylpropyl)-4-(2,2-dimethyl-1-oxopropoxy)-1,7-dioxa-spiro[5.5]undec-10-ene (24), To a solution of aldehyde 22 ($72.6 \mathrm{mg}, 0.198$ mmol) in 9 mL of benzene was added ylide 23 ($69 \mathrm{mg}, 0.218 \mathrm{mmol}$). The reaction was refluxed for 36 h . It was then concentrated and chromatographed with 10% acetate in hexanes. This provided 76 mg of enal 24 (94% yield): $[\alpha]^{25}$ D $+52.39^{\circ}\left(c 2.42, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2970$, $2938,1720,1685,1460,1382,1278,1160,1000 \mathrm{~cm}^{-1}$; NMR (500 MHz CDCl_{3}) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{ddd}, 1 \mathrm{H}, J=7.14,1.00 \mathrm{~Hz}$), 5.74 (dd, $1 \mathrm{H}, J=9.89,1.79 \mathrm{~Hz}), 5.55(\mathrm{dd}, 1 \mathrm{H}, J=9.89,2.59 \mathrm{~Hz}), 5.20-5.15$ $(\mathrm{m}, 1 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dd}, 1 \mathrm{H}, J=9.90,1.76 \mathrm{~Hz})$, 2.57-2.54 (m, 2H), 2.26-2.22 (m, 1H), 2.05-1.99 (m, 2H), 1.73 (d, $3 \mathrm{H}, J=1.00 \mathrm{~Hz}), 1.63-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.21$ $(\mathrm{m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.40 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=$ $7.63 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.85 \mathrm{~Hz})$; MS $(20 \mathrm{eV}) 320\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right)$, $218\left(320-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}\right), 95$ (base peak). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{5}$: C, $70.87 ; \mathrm{H}, 9.44$. Found: C, $70.83 ; \mathrm{H}, 9.64$
$\left[2 R-\left[2 \alpha\left(2 E, 4 S^{*}, 5 S^{*}\right), 4 \alpha, 6 \beta\left[9 S^{*}, 8 R^{*}\left(S^{*}\right)\right]\right]\right]-2-[4-[[(1,1-D i m e t h y l-$ ethyl)dimethylsilyl]oxy]-3,5-dimethyl-2,6-heptadienyl]-9-methyl-8-(1.
methylpropyl)-4-(2,2-dimethyl-1-oxopropoxy)-1,7-dioxaspiro[5,5]undec$\mathbf{1 0 - e n e}$ (28), To a mixture of $40 \mathrm{mg}(0.098 \mathrm{mmol})$ of aldehyde 24 and 50 mg of powdered 4A molecular sieves in 2.0 mL of anhydrous toluene at $-78^{\circ} \mathrm{C}$ was added $196 \mu \mathrm{~L}$ of the (R, R)-crotylboronate $25(1.0 \mathrm{M}$ in toluene). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then an additional $196 \mu \mathrm{~L}$ of 25 was added. After stirring at $-78^{\circ} \mathrm{C}$ for I h, the reaction mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted three times with ether, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (elution 1.5 ether-hexanes) gave 41.8 mg (92%) of a ca. $4: 1$ mixture of C_{12} and C_{13} diastereomers. Analytical data for the major isomer 26: $[\alpha]^{25}{ }_{\mathrm{D}}+69.83^{\circ}\left(c \quad 3.49, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3600-3500$, 2979, 2928, 1721, 1289, 1161, $999 \mathrm{~cm}^{-1} ;$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.79-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{dd}, 1 \mathrm{H}, J=9.78,1.62 \mathrm{~Hz}), 5.55(\mathrm{dd}, 1 \mathrm{H}$, $J=9.78,2.60 \mathrm{~Hz}), 5.44(\mathrm{dd}, 1 \mathrm{H}, J=5.95,5.95 \mathrm{~Hz}), 5.18-5.12(\mathrm{~m}$, 3 H), $3.69-3.67$ (m, 1 H), 3.68 (dd, $1 \mathrm{H}, J=8.51,2.27 \mathrm{~Hz}$), 3.41 (dd, $1 \mathrm{H}, J=9.90,1.85 \mathrm{~Hz}), 2.34-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.00(\mathrm{dd}, 2 \mathrm{H}, J=12.36$, $4.66 \mathrm{~Hz}), 1.71(\mathrm{~d}, 1 \mathrm{H}, J=2.27 \mathrm{~Hz}), 1.61(\mathrm{~d}, 3 \mathrm{H}, J=0.72 \mathrm{~Hz})$, $1.52-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, 3 \mathrm{H}, J$ $=7.24 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J=7.11 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.81 \mathrm{~Hz}), 0.88$ $(\mathrm{d}, 3 \mathrm{H}, J=6.78 \mathrm{~Hz})$; MS $(20 \mathrm{eV}) 305\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}-\mathrm{C}_{4} \mathrm{H}_{7}\right.$, base peak), $274\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right), 219\left(305-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right)$; HRMS (CI) calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{5} 463.3425$, found 463.3434 .

A mixture of 64 mg (0.14 mmol) of alcohol 26 ($4: 1$ mixture of diastereomers), $48 \mu \mathrm{~L}(0.21 \mathrm{mmol})$ of tert-butyldimethylsilyl trifluoromethanesulfonate, and $48 \mu \mathrm{~L}(0.42 \mathrm{mmol})$ of 2,6 -lutidine in 2.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 0.5 h . The reaction mixture was diluted with MeOH and concentrated under reduced pressure. Flash chromatography (elution with 1:40 ether-hexanes) afforded 75.3 mg (94\%) of a $4: 1$ mixture of silyl ether 28 and the C_{12}, C_{13} diastereomer (29). Analytical data for the major isomer 28: $[\alpha]^{25} \mathrm{D}+44.47^{\circ}$ (c 3.78, CHCl_{3}); IR (neat) $2960,2938,1733,1465,1288,1258,1160,1005,841$, $780 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.72$ (dd, 1 $\mathrm{H}, J=9.90,1.73 \mathrm{~Hz}$), $5.55(\mathrm{dd}, 1 \mathrm{H}, J=9.90,2.61 \mathrm{~Hz}$), 5.28 (dd, 1 $\mathrm{H}, J=6.20,6.20 \mathrm{~Hz}), 5.18-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.94(\mathrm{~m}, 2 \mathrm{H})$, $3.90-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=7.81 \mathrm{~Hz}), 3.42(\mathrm{dd}, 1 \mathrm{H}, J=9.91$, $1.80 \mathrm{~Hz}), 2.35-2.16(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{dd}, 2 \mathrm{H}, J=7.53,4.66 \mathrm{~Hz}), 1.55$ $(\mathrm{s}, 3 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.91$ $(\mathrm{t}, 3 \mathrm{H}, J=7.59 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=7.52 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.72$ $\mathrm{Hz}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, 3 \mathrm{H}, J=6.92 \mathrm{~Hz}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}$, $3 \mathrm{H}) ; \mathrm{MS}(20 \mathrm{eV}) 521\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7}\right), 419\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}-\right.$ $\left.\mathrm{C}_{4} \mathrm{H}_{7}\right), 388\left(\mathrm{M}^{+}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right.$), 221 (base peak).
$\left[2 R-\left[2 \alpha\left(2 E, 4 S^{*}, 5 R^{*}\right), 4 \alpha, 6 \beta\left[8 R^{*}\left(S^{*}\right), 9 S^{*}\right]\right]\right]-2-[4-[[(1,1-D i m e t h y l-$ ethyl) dimethylsilyl]oxy]-3,5-dimethyl-6-oxo-2-hexenyl]-9-methyl-8-(1-methylpropyl)-4-(2,2-dimethyl-1-oxopropoxy)-1,7-dioxaspiro[5,5]undec10 -ene (30), A solution of $15 \mathrm{mg}(0.026 \mathrm{mmol})$ of a ca. $4: 1$ mixture of olefins 28 and 29 in 2 mL of THF at room temperature was treated with $0.110 \mathrm{~mL}(0.028 \mathrm{mmol})$ of a 0.26 M solution of OsO_{4} in THF and 9.0 $\mu \mathrm{L}$ of pyridine. The reaction was stirred at room temperature until TLC analysis showed consumption of the starting material. Approximately 50 mg of Florisil and 10 mg of solid NaHSO_{3} were added followed by 4 mL of ethyl acetate and 5 drops of $\mathrm{H}_{2} \mathrm{O}$ to initiate the reductive workup. This mixture was stirred vigorously for 12 h until the organic phase was clear and colorless. The reaction was filtered and the filtrate was dried over anhydrous MgSO_{4}, filtered, and concentrated at reduced pressure. The crude diol(s) was immediately taken up in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cooled to $0{ }^{\circ} \mathrm{C}$, and treated with $11.5 \mathrm{mg}(0.026 \mathrm{mmol})$ of $\mathrm{Pb}(\mathrm{OAc})_{4}$, for 5 min . The reaction was then diluted with 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and poured into 10 mL of saturated $\mathrm{Na} \mathrm{HCO}_{3}$. The layers were separated, and the aqueous phase was extracted with $3 \times 5 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated at reduced pressure. Chromatography of the residue (25% ethyl acetate-hexanes) gave 10.2 mg (66% for two steps) of aldehyde 30 as a clear, colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+57.35^{\circ}\left(c 1.02, \mathrm{CHCl}_{3}\right)$; IR (neat) 2970 , 2930, 2860, 2720, 1725, 1465, $1385 \mathrm{~cm}^{-1}$; NMR (500 MHz) $\delta 9.74$ (d, $1 \mathrm{H}, J=2.94 \mathrm{~Hz}), 5.73(\mathrm{dd}, 1 \mathrm{H}, J=9.4,1.8 \mathrm{~Hz}), 5.54(\mathrm{dd}, 1 \mathrm{H}, J=$ $9.9,2.6 \mathrm{~Hz}), 5.41(\mathrm{dd}, 1 \mathrm{H}, J=6.85,6.85 \mathrm{~Hz}), 5.18-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.09$ (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 3.92-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, 1 \mathrm{H}, J=9.92,1.88$ $\mathrm{Hz}), 2.57-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 2 \mathrm{H})$, $2.02-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~d}, 3 \mathrm{H}, J=0.99 \mathrm{~Hz}), 1.55-1.39(\mathrm{~m}, 4 \mathrm{H})$, $1.25-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.51 \mathrm{~Hz}), 0.90(\mathrm{~d}$, $3 \mathrm{H}, J=7.79 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.86 \mathrm{~Hz}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}$, $3 \mathrm{H}, J=7.03 \mathrm{~Hz}), 0.03(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(20 \mathrm{eV}) 52 \mathrm{I}, 419$, 221 (base peak); HRMS (CI) calcd for $\mathrm{C}_{33} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{M}^{+}+1\right)$ 579.4083, Found 579.4045.
$\left[2 R-\left[2 \alpha\left(2 E, 4 S^{*}, 5 S^{*}, 6 E\right), 4 \alpha, 6 \beta\left[8 R^{*}\left(S^{*}\right), 9 S\right]\right]\right]-5-[[(1,1-D i m e t h y l-$ ethyl) dimethylsilyl]oxy]-8-[4-(2,2-dimethyl-1-oxopropoxy)-9-methyl-8-(1-methylpropyI)-1,7-dioxaspiro $[5,5]$ undec-10-en-2-yl]-4,6-dimethyl-2,6octadienoic Acld Methyl Ester (31), A mixture of $1.11 \mathrm{~g}(1.92 \mathrm{mmol})$ of aldehyde 30 and $1.44 \mathrm{~g}(4.30 \mathrm{mmol})$ of methyl (triphenylphosphoranylidene) acetate in 10.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room
temperature for 24 h . Concentration under reduced pressure and flash chromatography (elution with 1:10 ether-hexanes) gave 1.22 g (95%) of the enoate 31 as a single isomer, homogeneous by TLC and spectroscopic criteria: $[\alpha]^{25}{ }_{\mathrm{D}}+35.39^{\circ}\left(c 4.38, \mathrm{CHCl}_{3}\right)$; IR 2986, 2945, 1738, 1727, 1660, 1462, $1150,1000,842,781 \mathrm{~cm}^{-1}$; NMR $\left(250 \mathrm{mHz}, \mathrm{CDCl}_{3}\right) \delta 7.01$ (dd, $1 \mathrm{H}, J=15.80,7.93 \mathrm{~Hz}$), $5.80(\mathrm{dd}, 1 \mathrm{H}, J=15.80,1.13 \mathrm{~Hz}$), 5.73 (dd, $1 \mathrm{H}, J=9.91,1.72 \mathrm{~Hz}), 5.55(\mathrm{dd}, 1 \mathrm{H}, J=9.91,2.56 \mathrm{~Hz}), 5.16$ (br t, $1 \mathrm{H}, J=4.73 \mathrm{~Hz}$), $5.14-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.73$ ($\mathrm{s}, 3 \mathrm{H}$) , $3.71(\mathrm{~d}, 1 \mathrm{H}, J=7.11 \mathrm{~Hz}), 3.41(\mathrm{dd}, 1 \mathrm{H}, J=9.95,1.63 \mathrm{~Hz})$, $2.46-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{dd}, 2 \mathrm{H}, J=12.31,4.39 \mathrm{~Hz}), 1.56(\mathrm{~d}, 3 \mathrm{H}$, $J=0.92 \mathrm{~Hz}), 1.54-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.23$ $\mathrm{Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=7.64 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=7.00 \mathrm{~Hz}), 0.86(\mathrm{~d}$, $3 \mathrm{H}, J=6.49 \mathrm{~Hz}), 0.85(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.06(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(20$ eV) 221 (base peak). Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{O}_{7} \mathrm{Si}: \mathrm{C}, 68.10 ; \mathrm{H}, 9.83$. Found: C, 68.03; H, 10.22.
[$\left.2 R-\left[2 \alpha\left(2 E, 4 S^{*}, 5 S^{*}, 6 E\right), 4 \alpha, 6 \beta\left[8 R^{*}\left(S^{*}\right), 9 S^{*}\right]\right]\right]-2-[4-[[(1,1-D i-$ methylethyl)dimethylsilyl]oxy]-3,5-dimethyl-8-oxo-2,6-octadienyl]-9-methyl-8-(1-methylpropyl)-4-(2,2-dimethyl-1-oxopropoxy)-1,7-dioxaspiro[5.5$]$ undec-10-ene (33), To a solution of $374 \mathrm{mg}(0.59 \mathrm{mmol})$ of enoate 31 in 5.0 mL of anhydrous THF at $-78^{\circ} \mathrm{C}$ was added 1.20 mL of diisobutylaluminum hydride (1.0 M in hexanes). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and then was poured into saturated potassium sodium tartrate. The reaction mixture was extracted three times with ether, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with $1: 4$ ether-hexanes) gave 289 mg (81%) of alcohol 32 and 52.2 mg of recovered 31 (total mass recovery $=94 \%$). Analytical data for alcohol 32: $[\alpha]^{25}{ }_{\mathrm{D}}+47.12^{\circ}\left(c 2.95, \mathrm{CHCl}_{3}\right)$; IR (neat) $3660-3200$, 1733, 1465, 1382, 1289, 1160, 1005, 841, $782 \mathrm{~cm}^{-1}$; NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.71(\mathrm{dd}, 1 \mathrm{H}, J=9.90,1.77 \mathrm{~Hz}), 5.65(\mathrm{dd}, 1 \mathrm{H}, J=15.56$, 7.43 Hz), $5.88(\mathrm{dt}, 1 \mathrm{H}, J=15.56,5.47 \mathrm{~Hz}), 5.54(\mathrm{dd}, 1 \mathrm{H}, J=9.90$, $2.61 \mathrm{~Hz}), 5.25(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, J=6.96 \mathrm{~Hz}), 5.17-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}$, $2 \mathrm{H}, J=5.47,5.47 \mathrm{~Hz}), 3.87-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=7.53 \mathrm{~Hz})$, $3.40(\mathrm{dd}, 1 \mathrm{H}, J=9.93,1.80 \mathrm{~Hz}), 2.32-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.97(\mathrm{~m}$, $2 \mathrm{H}), 1.53(\mathrm{~d}, 3 \mathrm{H}, J=0.81 \mathrm{~Hz}), 1.50-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.16(\mathrm{~m}, 1$ H), $1.15(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.42 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=7.27 \mathrm{~Hz})$, $0.86(\mathrm{~d}, 3 \mathrm{H}, J=7.07 \mathrm{~Hz}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, 3 \mathrm{H}, J=6.89 \mathrm{~Hz})$, $-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(20 \mathrm{eV}) 521\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}\right), 419\left(\mathrm{M}^{+}\right.$ $-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}$), 221 (base peak).

To a solution of $56 \mu \mathrm{~L}(0.64 \mathrm{mmol})$ of oxalyl chloride in 1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added $91 \mu \mathrm{~L}(1.28 \mathrm{mmol})$ of dimethyl sulf. oxide. The resulting solution was allowed to stir at $-78^{\circ} \mathrm{C}$ for 5 min at which time 259 mg (0.43 mmol) of alcohol 32 was added in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After stirring of the mixture at $-78^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h}, 357 \mu \mathrm{~L}(2.56$ mmol) of triethylamine was added and the reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 30 min . The solution was then poured into pH 7.0 buffer, extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 1:6 ether-hexanes) gave 245 mg (95%) of enal 33, which was homogeneous by TLC and spectroscopic criteria: $[\alpha]^{25}{ }_{\mathrm{D}}+38.85^{\circ}\left(c 1.66, \mathrm{CHCl}_{3}\right)$; IR (neat) $2960,2938,1731$, $1600,1462,1380,1289,1160,845 \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.49(\mathrm{~d}, 1 \mathrm{H}, J=7.86 \mathrm{~Hz}), 6.92(\mathrm{dd}, 1 \mathrm{H}, J=15.71,7.38 \mathrm{~Hz}), 6.09$ (dd, $1 \mathrm{H}, J=15.71,7.86 \mathrm{~Hz}), 5.72(\mathrm{dd}, 1 \mathrm{H}, J=9.80,1.32 \mathrm{~Hz}), 5.54(\mathrm{dd}$, $1 \mathrm{H}, J=9.80,2.48 \mathrm{~Hz}), 5.34(\mathrm{brt}, 1 \mathrm{H}, J=6.98 \mathrm{~Hz}), 5.21-5.09(\mathrm{~m}$, $1 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, 1 \mathrm{H}, J=7.59 \mathrm{~Hz}), 3.40(\mathrm{dd}, 1 \mathrm{H}$, $J=9.98,1.27 \mathrm{~Hz}), 2.63-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.00(\mathrm{dd}, 2 \mathrm{H}, J=12.05,4.54$ $\mathrm{Hz}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9$ H), $0.91(\mathrm{t}, 3 \mathrm{H}, J=6.92 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=6.71 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3$ $\mathrm{H}, J=7.56 \mathrm{~Hz}), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.19 \mathrm{~Hz}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3$ $\mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 6,7,8-Trideoxy-6-methyl-5-O-methyl-2,3-O-(1-methyl-ethylidene)-L-glycero-D-allo-oct-7-enofuranoside (36), To a solution of $4.65 \mathrm{~g}(22.99 \mathrm{mmol})$ of aldehyde 34 in 100 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ was added $5.65 \mathrm{~mL}(45.94 \mathrm{mmol})$ of $\mathrm{BF}_{3}, \mathrm{OEt}_{2}$ and the mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 15 min . To this was added 9.60 g (30.48 mmol) of (E)-crotyltributyltin in 50 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over a period of 30 min . After the addition was complete, the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 60 min and was then poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The two layers were partitioned, and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with $1: 5$ ether-hexanes) gave 4.55 g (79%) of a ca. 10:1 mixture of alcohol 35 and the corresponding hydroxyl epimer. Analytical data for pure 35: $[\alpha]^{25}{ }_{\mathrm{D}}-68.20\left(c 2.95, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3672,3610,3430,3020,2400,1230,1190,790,740,672, \mathrm{~cm}^{-1}$; NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 2 \mathrm{H})$, $4.96(\mathrm{brs}, 1 \mathrm{H}), 4.88(\mathrm{~d}, 1 \mathrm{H}, J=5.99 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=5.99 \mathrm{~Hz})$, $4.44(\mathrm{~d}, 1 \mathrm{H}, J=2.23 \mathrm{~Hz}), 3.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.49$ (ddd, $1 \mathrm{H}, J=8.22$, $2.23,2.23 \mathrm{~Hz}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.32$ $(\mathrm{s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, 3 \mathrm{H}, J=6.79 \mathrm{~Hz}) ; \mathrm{MS}(20 \mathrm{eV}) 258\left(\mathrm{M}^{+}\right), 243\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{3}\right), 203\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7}\right.$, base peak).

To a slurry of 1.32 g (33.10 mmol) of $60 \% \mathrm{NaH}$ in 20.0 mL of
anhydrous THF at $0^{\circ} \mathrm{C}$ was added $5.7 \mathrm{~g}(22.06 \mathrm{mmol})$ of alcohol 35 (ca. 10:1 mixture of hydroxyl epimers) in 30.0 mL of dry THF. After warming from $0{ }^{\circ} \mathrm{C}$ to room temperature over a $30-\mathrm{min}$ period, the reaction mixture was treated with $6.9 \mathrm{~mL}(110.33 \mathrm{mmol})$ of MeI and was then heated at reflux for 3 h . The mixture was then cooled to room temperature and carefully quenched with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted three times with ether, and the combined organic extracts were dried over MgSO_{4} and concentrated. Flash chromatography (elution with $1: 12$ ether-hexanes) afforded $5.16 \mathrm{~g}(86 \%)$ of the methyl ether 36 as a single diastereomer, which was homogeneous by TLC and spectroscopic analysis: $[\alpha]^{25}$ D $-77.69^{\circ}\left(c 9.09, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2985,2940$, 1459, 1379, $1368,1199,1100,960,873 \mathrm{~cm}^{-1} ;$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.11-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, 1 \mathrm{H}$, $J=6.07 \mathrm{~Hz}), 4.55(\mathrm{~d}, 1 \mathrm{H}, J=6.07 \mathrm{~Hz}), 4.04(\mathrm{~d}, 1 \mathrm{H}, J=8.88 \mathrm{~Hz})$, 3.40 (s, 3 H), 3.37 ($\mathrm{s}, 3 \mathrm{H}$), 3.12 (dd, $1 \mathrm{H}, J=8.88,2.85 \mathrm{~Hz}$), $2.61-2.55$ (m, 1 H), $1.46(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.78 \mathrm{~Hz}$); MS (20 eV) $257\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 217\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7}\right.$, base peak); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{5}(+\mathrm{H}) 273.1702$, found 273.1702 .

1,4:2,3-Dianhydro-6,7,8-trideoxy-6-methyl-5-O-methyl-L-glycero-D-allo-oct-7-enitol (39), A mixture of 7.5 g (27.54 mmol) of acetonide 36 and 25 mL of 1 N HCl in 75 mL of methanol was heated at reflux for 5 h at which time TLC analysis showed complete consumption of the starting material. The solution was then cooled to room temperature, neutralized with basic ion-exchange resin, filtered through Celite, and concentrated under reduced pressure. The residue from this was partitioned between saturated NaHCO_{3} and ether, dried over MgSO_{4}, and concentrated. The crude 37 (6.25 g) so obtained was placed in 125 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and lowered to $0^{\circ} \mathrm{C}$. To this was added 21.5 mL (134.5 mmol) of $\mathrm{Et}_{3} \mathrm{SiH}$ and $16.5 \mathrm{~mL}(134.5 \mathrm{mmol})$ of $\mathrm{BF}_{3}, \mathrm{OEt}_{2}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h and then at $25^{\circ} \mathrm{C}$ for 6 h and was then poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography ($1: 1$ ethyl acetate-hexanes containing $2 \% 2$ propanol) gave $4.30 \mathrm{~g}(79 \%)$ of diol 38, which was homogeneous by TLC and spectroscopic analysis: $[\alpha]^{25} \mathrm{D}-10.17^{\circ}$ ($c 2.87, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right)$ 3523, 3400, 3009, 2979, 2938, 1640, 1452, $1100,928 \mathrm{~cm}^{-1}$; NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.89-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{ddd}, \mathrm{I}$ $\mathrm{H}, J=5.60,4.80,3.62 \mathrm{~Hz}), 4.15(\mathrm{dd}, 1 \mathrm{H}, J=5.50,5.60 \mathrm{~Hz}), 4.02(\mathrm{dd}$, $1 \mathrm{H}, J=9.72,4.80 \mathrm{~Hz}$), 3.82 (dd, $1 \mathrm{H}, J=5.60,5.60 \mathrm{~Hz}$), 3.73 (dd, $1 \mathrm{H}, J=9.70,3.62 \mathrm{~Hz}$), $3.46(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, 1 \mathrm{H}, J=5.60,5.60 \mathrm{~Hz}$), 2.95 (br s, I H), 2.90 (br s, 1 H), 2.54-2.50 (m, I H), 1.07 (d, $3 \mathrm{H}, J$ $=6.92 \mathrm{~Hz})$; MS $(20 \mathrm{eV}), 203\left(\mathrm{M}^{+}+1\right), 202\left(\mathrm{M}^{+}\right), 184\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 59.38; H, 8.97. Found: C, 59.10; H, 8.81.

To a solution of $3.0 \mathrm{~g}(14.83 \mathrm{mmol})$ of diol 38 in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 4.85 mL (32.33 mmol) of 2-acetoxyisobutyryl bromide. After stirring at room temperature for 1 h , the reaction mixture was poured into saturated NaHCO_{3}, extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried (MgSO_{4}), and concentrated. The crude residue was then suspended in 60 mL of absolute MeOH , and excess Amberlite IRA-400 resin was added. The mixture was stirred at room temperature overnight and then filtered through Celite and concentrated. Flash chromatography ($1: 3$ ether-hexanes) afforded 2.48 g (92%) of the epoxide 39, homogeneous by TLC and spectroscopic analysis: $[\alpha]^{2 S} \mathrm{D}-36.09^{\circ}\left(c 7.61, \mathrm{CHCl}_{3}\right)$; IR (neat) 2982, 2911, 2865, 1638, 1457, 1090, 910, $852 \mathrm{~cm}^{-1}$; NMR (250 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.82-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~d}, 1 \mathrm{H}$, $J=4.63 \mathrm{~Hz}), 3.91\left(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J_{\mathrm{AB}}=10.07 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=32.94 \mathrm{~Hz}\right)$, $3.85-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{I} \mathrm{H}, J=6.89,4.63 \mathrm{~Hz}$), $2.57-2.43(\mathrm{~m}, \mathrm{IH})$, $1.11(\mathrm{~d}, 3 \mathrm{H}, J=6.86 \mathrm{~Hz})$; MS $185\left(\mathrm{M}^{+}+1\right), 129$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{7}\right)$.

Enoate 41, To a solution of $4.2 \mathrm{~g}(22.88 \mathrm{mmol})$ of epoxide 39 in 150 mL of anhydrous THF at $0^{\circ} \mathrm{C}$ was added 25.0 mL of lithium triethylborohydride (1.0 M in THF). The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 6 h and then quenched with $\mathrm{H}_{2} \mathrm{O}$. Extraction into ether, drying (MgSO_{4}), and concentration gave a clear oil. Flash chromatography ($1: 1$ ether-hexanes) afforded $4.04 \mathrm{~g}(96 \%)$ of alcohol $\mathbf{4 0}$, which was used immediately for the next step. The alcohol 40 ($190 \mathrm{mg}, 1.02 \mathrm{mmol}$) was placed in 5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and this was cooled to $-78^{\circ} \mathrm{C}$. Ozone was then bubbled through the solution until a distinct blue color persisted. After stirring at $-78^{\circ} \mathrm{C}$ for 5 min , Ar was bubbled through the solution for 5 min to dissipate the excess ozone. The solution was then treated with excess Zn^{0} and 4 drops of glacial HOAc and was then stirred at room temperature for 0.5 h . Filtration through Celite and removal of the volatiles under reduced pressure provided 185 mg of the corresponding crude aldehyde. This material was immediately suspended in 5 mL of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 511 mg (1.53 mmol) of methyl (triphenylphosphoranylidene)acetate was added. After stirring for 12 h at room temperature, the solvent was removed under reduced pressure and the residue was purified by flash chromatography. Elution with 1:5 acetone-hexanes gave 178 mg (84%) of the enoate 41 as a single isomer, homogeneous by TLC and spectroscopic criteria: $[\alpha]^{25}{ }_{D}-20.82^{\circ}(c 6.56$,
CHCl_{3}); IR 3620-3180, 2989, 2950, 2890, 1725, 1659, 1438, 1277, 1100 cm^{-1}; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.02(\mathrm{dd}, 1 \mathrm{H}, J=15.77,7.46 \mathrm{~Hz}$), 5.84 (dd, $1 \mathrm{H}, J=15.77,1.44 \mathrm{~Hz}$), 4.33-4.30 (m, I H), 3.95-3.87 (m, $2 \mathrm{H}), 3.73$ (s, 3 H), 3.61 (dd, $1 \mathrm{H}, J=6.60,4.32 \mathrm{~Hz}$), 2.74-2.71 (m, 1 H), 2.16-2.09 (m, 1 H), 2.02 (br s, 1 H), $1.91-1.86$ (m, l H), 1.09 (d, $3 \mathrm{H}, J=6.86 \mathrm{~Hz}$); MS $226\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 133\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{2}\right)$, 131 (base peak).
[2S-[2 $\left.\left.\alpha\left(1 S^{*}, 2 R^{*}, 3 E\right), 3 \beta\right]\right]-2-[5-[[(1,1-$ Dimethylethyl $)$ dimethylsilyl]-oxy]-1-methoxy-2-methyl-3-pentenyl]tetrahydro-3-furanol (43), To a solution of $1.06 \mathrm{~g}(4.33 \mathrm{mmol})$ of enoate 41 in 30 mL of anhydrous ether at $0^{\circ} \mathrm{C}$ was added 13.0 mL of diisobutylaluminum hydride $(1.0 \mathrm{M}$ in hexanes). After stirring for 2 h at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated potassium sodium tartrate, and the layers were partitioned. The aqueous layer was extracted three times with ethyl acetate, and then the combined organic extracts were dried over MgSO_{4} and concentrated. Flash chromatography (elution with 1:3 acetonehexane) yielded 910 mg (97%) of diol 42, which was homogeneous by TLC and spectroscopic analysis: $[\alpha]^{25}{ }_{\mathrm{D}}-17.43^{\circ}\left(c 5.22, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right), 3600,3520-3200,1462,1381,1102,965,913 \mathrm{~cm}^{-1}$; NMR (500 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 5.78(\mathrm{ddt}, 1 \mathrm{H}, J=15.53,7.27,1.02 \mathrm{~Hz}$). 5.68 (ddt, 1 $\mathrm{H}, J=15.53,5.77,0.95 \mathrm{~Hz}), 4.38-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, 2 \mathrm{H}, J=5.77$ $\mathrm{Hz}), 3.95(\mathrm{dt}, 1 \mathrm{H}, J=8.43,3.82 \mathrm{~Hz}$), $3.87(\mathrm{dt}, 1 \mathrm{H}, J=8.43,6.55 \mathrm{~Hz}$), $3.70(\mathrm{dd}, 1 \mathrm{H}, J=5.09,3.47 \mathrm{~Hz}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, 1 \mathrm{H}, J=5.09$, $5.09 \mathrm{~Hz}), 2.56-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.60(\mathrm{brs}, 2 \mathrm{H}), 1.10(\mathrm{~d}, 3 \mathrm{H}, J=6.94 \mathrm{~Hz})$; MS $198\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right), 131$ $\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}\right.$, base peak). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4}: \mathrm{C}, 61.09 ; \mathrm{H}$, 9.32. Found: C, 60.79; H, 9.49.

To a solution of $408 \mathrm{mg}(1.89 \mathrm{mmol})$ of diol $\mathbf{4 2} \mathrm{in} 5.0 \mathrm{inL}$ of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $298 \mathrm{mg}(1.98 \mathrm{mmol})$ of tert-butyldimethylsilyl chloride, $0.53 \mathrm{~mL}(3.78 \mathrm{mmol})$ of triethylamine, and $23 \mathrm{mg}(0.19 \mathrm{mmol})$ of 4 -(dimethylamino)pyridine. The reaction mixture was stirred at room temperature for 10 h and was then diluted with 5.0 mL of 0.1 N HCl . The layers were partitioned, and the aqueous layer was washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over MgSO_{4} and concentrated. Flash chromatography (elution with 1:5 acetone-hexane) gave 602 mg (97%) of alcohol 43, homogeneous by TLC and spectroscopic analysis: $[\alpha]^{25} \mathrm{D}-27.54^{\circ}\left(c 6.21, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3600$, 3590-3280, 3009, 2961, 2939, 1465, 1260, 965, $840 \mathrm{~cm}^{-1}$; NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.74$ (ddd, $1 \mathrm{H}, J=15.48,7.41,1.21 \mathrm{~Hz}$), 5.59 (dt, 1 $\mathrm{H}, J=15.48,5.38 \mathrm{~Hz}), 4.35-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, 2 \mathrm{H}, J=5.38 \mathrm{~Hz})$, 3.98 (dt, 1 H, $J=8.10,3.69 \mathrm{~Hz}$), $3.69-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.68$ (dd, 1 H , $J=4.99,3.43 \mathrm{~Hz}), 4.43(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, 1 \mathrm{H}, J=4.99,4.99 \mathrm{~Hz})$, 2.54-2.50 (m, I H), 3.39 (br s, 1 H), 2.10-2.05 (m, 1 H), 1.89-1.84 (m, $1 \mathrm{H}), 1.07(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS} 273$ ($\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$), 131 (base peak).
[2R-[2R $\left.\left.{ }^{*}\left(1 R^{*}, 2 S^{*}, 3 E\right)\right]\right]-2-[5-[[(1,1-$ Dimethylethyl $)$ dimethylsilyl]-oxy]-1-methoxy-2-methyl-3-pentenyl]dihydro-3(2H)-furanone (44), A mixture of $360 \mathrm{mg}(1.47 \mathrm{mmol})$ of alcohol $\mathbf{4 3}, 350 \mathrm{mg}(1.62 \mathrm{mmol})$ of pyridinium chlorochromate, $1.33 \mathrm{mg}(1.62 \mathrm{mmol})$ of sodium acetate, and 1.75 g of powdered 4 A molecular sieves in 5.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred overnight at room temperature. The reaction mixture was then diluted with ether, filtered through a pad of Celite, and concentrated under reduced pressure. Flash chromatography (elution with 1:5 ace-tone-hexanes) gave 318 mg (89%) of ketone 44 as an oil, which was homogeneous by TLC and spectroscopic criteria: $[\alpha]^{25}{ }_{\mathrm{D}}+63.67^{\circ}$ (c 5.2, CHCl_{3}); IR (neat) $2959,2938,2861,1758,1259,1120,840,782 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.62$ (ddt, $1 \mathrm{H}, J=15.35,5.25,0.47 \mathrm{~Hz}$), 5.35 (ddt, $1 \mathrm{H}, J=15.35,9.24,1.61 \mathrm{~Hz}$), 3.45 (dt, $1 \mathrm{H}, J=9.15,4.03$ $\mathrm{Hz}), 4.09-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{~d}, 1 \mathrm{H}, J=2.08 \mathrm{~Hz}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.18$ (dd, $1 \mathrm{H}, J=9.76,2.08 \mathrm{~Hz}), 2.75-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{dt}, 1 \mathrm{H}, J=$ $18.01,9.15 \mathrm{~Hz}$), 2.37 (ddd, $1 \mathrm{H}, J=18.01,7.40,4.03 \mathrm{~Hz}$), $1.04(\mathrm{~d}, 3$ $\mathrm{H}, J=6.71 \mathrm{~Hz}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS}(20 \mathrm{eV}) 328\left(\mathrm{M}^{+}\right)$, $271\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 129$ (base peak). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}$: C , 62.15; H, 9.82. Found: C, 61.93; H, 9.93.
$\left[2 R-\left[2 \alpha\left[2 E, 4 S^{*}, 5 S^{*}, 6 E, 8 E\left[5 R^{*}\left(1 R^{*}, 2 S^{*}, 3 E\right)\right]\right], 4 \alpha, 6 \beta\left[8 R^{*}\right.\right.\right.$ ($\left.\left.\left.\left.S^{*}\right), 9 S\right]\right]\right]-2-[4-[[(1,1-$ Dimethylethyl)dimethylsilyl]oxy]-8-[5-[[(1,1-dime-thylethyl)dimethylsilyl]oxy]-1-methoxy-2-methyl-3-pentenyl]dihydro-4-ox0-3(2H)-furanylidene]-3,5-dimethyl-2,6-octadienyl]-4-(2,2-dimethyl-1-oxopropoxy)-9-methyl-8-(1-methylpropyl)-1,7-dioxospiro[5.5]undec-10ene (45), To a solution of $16.7 \mathrm{mg}(0.051 \mathrm{mmol})$ of ketone 44 in 1.0 mL of anhydrous THF at $-78^{\circ} \mathrm{C}$ was added $66 \mu \mathrm{~L}$ of lithium hexamethyldisylazide (1.0 M in hexane). The resulting yellow solution was stirred at $-78^{\circ} \mathrm{C}$ for 5 min and was then warmed to $0^{\circ} \mathrm{C}$ and stirred for 30 min . The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$ at which time 40 mg (0.066 mmol) of enal 33 was added in 1.5 mL of dry THF. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , the solution was treated with $28 \mu \mathrm{~L}(0.203 \mathrm{mmol})$ of triethylamine and $12 \mu \mathrm{~L}(0.152 \mathrm{mmol})$ of methanesulfonyl chloride. The resulting heterogeneous mixture was allowed to slowly warm to room temperature while stirring overnight. The reaction mixture was then poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted into ether, dried over MgSO_{4},
and concentrated. Flash chromatography (elution with 1:7 ether-hexanes) gave $31.2 \mathrm{mg}(67 \%)$ of the aldol product 45 , which was homogeneous by TLC and spectroscopic criteria: $[\alpha]^{25} \mathrm{D}+18.68^{\circ}$ (c 3.33 , CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 2960,2932,1720,1629,1461,1161,842 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.3$ (ddt, I H, $J=11.66,2.51 \mathrm{~Hz}$), 6.31 (dd, $1 \mathrm{H}, J=15.17,7.70 \mathrm{~Hz}$), 5.97 (dd, $1 \mathrm{H}, J=15.17,11.66 \mathrm{~Hz}$), 5.73 (dd, $1 \mathrm{H}, J=9.90,1.71 \mathrm{~Hz}), 5.61(\mathrm{dt}, 1 \mathrm{H}, J=15.36,5.18 \mathrm{~Hz}), 5.26(\mathrm{dd}$, $1 \mathrm{H}, J=9.90,2.59 \mathrm{~Hz}$), 5.42 (ddt, $1 \mathrm{H}, J=15.36,1.41 \mathrm{~Hz}$), 5.30 (br $\mathrm{t}, 1 \mathrm{H}, J=6.82 \mathrm{~Hz}), 5.19-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.86\left(\mathrm{~d} \mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J_{\mathrm{AB}}=14.04\right.$ $\left.\mathrm{Hz}, \Delta \nu_{\mathrm{AB}}=50.48 \mathrm{~Hz}, J=2.51 \mathrm{~Hz}\right), 4.30(\mathrm{~d}, 1 \mathrm{H}, J=2.32 \mathrm{~Hz})$, 4.03-3.91 (m, 2 H), 3.89-3.86 (m, 1 H), $3.70(\mathrm{~d}, 1 \mathrm{H}, J=8.04 \mathrm{~Hz}$), 3.47 (s, 3 H), 3.41 (dd, I H, $J=9.92,1.69 \mathrm{~Hz}$), 3.27 (dd, $1 \mathrm{H}, J=9.24,2.32$ $\mathrm{Hz}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.32(\mathrm{~m}, 1 \mathrm{H})$, 2.28-2.16 (m, 2 H), 2.03-1.99 (m, 2 H), 2.03-1.99 (m, 2 H), 1.56 (d, $3 \mathrm{H}, J=0.54 \mathrm{~Hz}), 1.52-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 9$ H), $1.08(\mathrm{~d}, 3 \mathrm{H}, J=6.73 \mathrm{~Hz}), 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.39 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3$ $\mathrm{H}, J=7.28 \mathrm{~Hz}$), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=7.33 \mathrm{~Hz}), 0.86(\mathrm{~d}, 3$ $\mathrm{H}, J=7.19 \mathrm{~Hz}$), $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}$, 3 H), $-0.06(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(20 \mathrm{eV}) 521\left(\mathrm{M}^{+}-\mathrm{C}_{22} \mathrm{H}_{3} \mathrm{O}_{4} \mathrm{Si}\right), 419$ ($522-$ $\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{CO}_{2} \mathrm{H}\right), 221$ (base peak).
$\left[2 R-\left[2 \alpha\left[2 E, 4 S^{*}, 5 S^{*}, 6 E, 8 E\left[5 R^{*}\left(1 R^{*}, 2 S^{*}, 3 E\right)\right]\right], 4 \alpha, 6 \beta\left[8 R^{*}\right.\right.\right.$ $\left.\left.\left.\left(S^{*}\right), 9 S^{*}\right]\right]\right]-2-[4-[[(1,1$-Dimethylethyl)dimethylisily $]$ oxy $]$-8-[dihydro-5-(5-hydroxy-1-methoxy-2-methyl-3-pentenyl)-4-ox0-3(2H)-furanylidene]-3,5-dimethyl-2,6-octadienyl]-4-(2,2-dimethyl-1-oxopropoxy) -9 -methyl-8-(1-methylpropyl)-1,7-dioxaspiro[5.5]undec-10-ene (46), To a solution of $42 \mathrm{mg}(0.046 \mathrm{mmol})$ of the bis(silyl ether) 45 in 2.0 mL of acetonitrile at $-20^{\circ} \mathrm{C}$ was added 8 drops of a mixture of acetonitrile and $40 \% \mathrm{HF}$ (ratio $95: 5$). The resulting solution was stirred at $-20^{\circ} \mathrm{C}$ and was then poured into saturated NaHCO_{3}. The reaction mixture was extracted three times with ether, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 1:3 acetone-hexane) afforded 33.2 mg (90%) of the alcohol 46, which was homogeneous by TLC and spectroscopic analysis: IR $\left(\mathrm{CHCl}_{3}\right) 3600,2960,2932,1721,1160,1000$, $841 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89$ (dt, $1 \mathrm{H}, J=11.66,2.42$ Hz), 6.31 (dd, $1 \mathrm{H}, J=15.16,7.90 \mathrm{~Hz}$), 5.96 (dd, $1 \mathrm{H}, J=15.16,11.66$ $\mathrm{Hz}), 5.72(\mathrm{dd}, 1 \mathrm{H}, J=9.88,1.06 \mathrm{~Hz}), 5.66(\mathrm{dt}, 1 \mathrm{H}, J=15.43,5.55$ Hz), 555 (ddd, $1 \mathrm{H}, J=9.88,2.53,0.65 \mathrm{~Hz}$), 5.41 (dd, $1 \mathrm{H}, J=15.43$, 9.06 Hz), 5.29 (br t, $1 \mathrm{H}, J=7.01 \mathrm{~Hz}$), $5.16-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}$, $\left.\mathrm{ABq}, 2 \mathrm{H}, J_{\mathrm{AB}}=14.18 \mathrm{~Hz}, \Delta \nu_{\mathrm{AB}}=54.18 \mathrm{~Hz}, J=2.42 \mathrm{~Hz}\right), 4.30(\mathrm{~d}$, $1 \mathrm{H}, J=1.75 \mathrm{~Hz}$), 3.93 (br t, $2 \mathrm{H}, J=5.55 \mathrm{~Hz}$), $3.88-3.86(\mathrm{~m}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, 1 \mathrm{H}, J=7.89 \mathrm{~Hz}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, 1 \mathrm{H}, J=10.05 \mathrm{~Hz})$, 3.30 (dd, $1 \mathrm{H}, J=8.97,1.75 \mathrm{~Hz}$), $2.82-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.38-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{~s}$, $3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}$, $3 \mathrm{H}, J=6.78 \mathrm{~Hz}), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.44 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=7.67$ $\mathrm{Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=7.55 \mathrm{~Hz}), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.71 \mathrm{~Hz}), 0.83(\mathrm{~s}$, $9 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}),-0.07(\mathrm{~s}, 3 \mathrm{H})$; $\mathrm{MS}(20 \mathrm{eV}) 521\left(\mathrm{M}^{+}-\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}\right)$, 419 (521-($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}\right), 417$ (base peak).
$\left[2 R-\left[2 \alpha\left[2 E, 4 S^{*}, 5 S^{*}, 6 E, 8 E\left[5 R^{*}\left(1 R^{*}, 2 S^{*}, 3 E\right)\right]\right], 4 \alpha, 6 \beta\left[8 R^{*}\right.\right.\right.$ $\left.\left.\left.\left(S^{*}\right), 9 S^{*}\right]\right]\right]-2-[4-[[(1,1-$ Dimethylethyl) dimethylisily $]$ oxy $] \cdot 8$-[dihydroxy-5-(1-methoxy-2-methyl-5-oxo-3-pentenyl)-4-oxo-3(2H)-furanylidene]-3,5-dimethyl-2,6-octadienyl]-4-(2,2-dimethyl-1-oxopropoxy)-9-methyl8 -(1-methylpropyl)-1,7-dioxaspiro [5.5]undec-10-ene (47), A mixture of $26 \mathrm{mg}(0.032 \mathrm{mmol})$ of alcohol $46,10.5 \mathrm{mg}(0.048 \mathrm{mmol})$ of pyridinium chlorochromate, $4.0 \mathrm{mg}(0.048 \mathrm{mmol})$ of sodium acetate, and 50 mg of powdered 4 A molecular sieves in 2.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then diluted with ether, filtered through a pad of Celite, and concentrated. Flash chromatography (elution with $1: 2$ ether-hexanes) gave $22.8 \mathrm{mg}(88 \%)$ of the enal 47 , which was homogeneous by TLC and spectroscopic analysis: $[\alpha]{ }^{25}$ D $+24.32\left(c 1.76, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3200,2650,2390,1721,1692$, $1628,1461,1162,1000,672 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.46(\mathrm{~d}$, $1 \mathrm{H}, J=7.90 \mathrm{~Hz}), 6.93(\mathrm{dt}, 1 \mathrm{H}, J=11.66,2.48 \mathrm{~Hz}), 6.76(\mathrm{dd}, 1 \mathrm{H}$, $J=15.68,8.31 \mathrm{~Hz}), 6.32(\mathrm{dd}, 1 \mathrm{H}, J=14.93,7.90 \mathrm{~Hz}), 6.14$ (ddd, 1 $\mathrm{H}, J=15.68,7.94,1.00 \mathrm{~Hz}$), 5.96 (dd, $1 \mathrm{H}, J=14.93,11.66 \mathrm{~Hz}$), 5.72 (dd, $1 \mathrm{H}, J=9.90,1.77 \mathrm{~Hz}$), 5.55 (dd, $1 \mathrm{H}, J=9.90,2.60 \mathrm{~Hz}$), 5.29 (br t, $1 \mathrm{H}, J=6.76 \mathrm{~Hz}$), $5.17-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.84\left(\mathrm{~d} \mathrm{AB} \mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}\right.$ $\left.=14.01 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=45.35 \mathrm{~Hz}, J=2.48 \mathrm{~Hz}\right), 4.22(\mathrm{~d}, 1 \mathrm{H}, J=2.63 \mathrm{~Hz})$, $3.88-3.863(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, 1 \mathrm{H}, J=8.02 \mathrm{~Hz}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}$, $1 \mathrm{H}, J=7.92,2.63 \mathrm{~Hz}$), 3.41 (dd, $1 \mathrm{H}, J=9.91,1.80 \mathrm{~Hz}$), $3.16-2.98$ (m, 1 H), 2.46-2.41 (m, 1 H), 2.38-2.19 (m, 3 H), 2.04-1.97 (m, 2 H), $1.55(\mathrm{~d}, 3 \mathrm{H}, J=0.57 \mathrm{~Hz}), 1.51-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.16$ ns, 9 H$), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.88 \mathrm{~Hz}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.37 \mathrm{~Hz}), 0.90$ (d, $3 \mathrm{H}, J=7.24 \mathrm{~Hz}$), 0.88 (d, $3 \mathrm{H}, J=6.78 \mathrm{~Hz}$), 0.87 (d, $3 \mathrm{H}, J=$ $6.82 \mathrm{~Hz}), 0.830(\mathrm{~s}, 9 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}(20 \mathrm{eV}) 521$ $\left(\mathrm{M}^{+}-\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}\right), 419\left(521-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}\right), 221$ (base peak).
$\left[3 \mathrm{a} R-\left[3 E\left[1\left[2 R^{*}, 4 S^{*}, 6 S^{*}, 8 R^{*}\left(S^{*}\right), 9 S^{*}\right], 2 E, 4 S^{*}, 5 S^{*}, 6 E\right], 3 \mathrm{a} \alpha,-\right.\right.$ $6 \alpha, 7 \beta, 7 \mathrm{a}, \alpha]-2-[4-[[(1,1$-Dimethylethyl) dimethylsily $]$ oxy $]-8$-(5 -formy]-3a,6,7,7a-tetrahydro-3a-hydroxy-7-methoxy-6-methyl-3(2H)-benzo-furanylidene)-3,5-dimethyl-2,6-octadienyl)-4-(2,2-dimethyl-7-oxo-
propyl)-9-methyl-8-(1-methylpropyl)-1,7-dioxaspiro[5.5]undec-10-ene (48), To a solution of 20 mg (0.025 mmol) of enal 47 in 1.0 mL of anhydrous THF at $0^{\circ} \mathrm{C}$ was added $162 \mu \mathrm{~L}$ of $\mathrm{Me}_{3} \mathrm{ASPhLi}(0.2 \mathrm{M}$ in THF). The resulting mixture was allowed to stir at $0^{\circ} \mathrm{C}$ for 10 min and was then poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous layer was extracted three times with ether, dried over MgSO_{4}, and concentrated under reducted pressure. The crude residue was dissolved in 1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ and $5.4 \mathrm{mg}(0.025 \mathrm{mmol})$ of m-chloroperoxybenzoic acid was added. After stirring of the mixture at $-20^{\circ} \mathrm{C}$ for 2.0 h , excess dimethyl sulfide was added and then the reaction mixture was poured into saturated NaHCO_{3}, and the layers were partitioned. The aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the combined organic extracts were dried over MgSO_{4} and concentrated. The crude material so obtained was then placed in 1.0 mL of dry toluene and heated at reflux for 30 min . The solution was concentrated under reduced pressure and purified by flash chromatography. Elution with 1:2 ether-hexanes gave $15.2 \mathrm{mg}(76 \%)$ of the enal $\mathbf{4 8}$, which was homogeneous by TLC and spectroscopic analysis: $[\alpha]^{25}{ }_{\mathrm{D}}+169.43^{\circ}\left(c 1.18, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right)$ 3510, 2981, 2959, 1721, $1681,1153,1000,842 \mathrm{~cm}^{-1}$. NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=1.70 \mathrm{~Hz}), 6.36(\mathrm{dt}, 1 \mathrm{H}, J=$ 10.94, 2.35 Hz), 5.81 (dd, $1 \mathrm{H}, J=15.08,10.94 \mathrm{~Hz}$), 5.72 (dd, $1 \mathrm{H}, J$ $=9.90,1.49 \mathrm{~Hz}$), $5.68(\mathrm{dd}, 1 \mathrm{H}, J=15.08,8.07 \mathrm{~Hz}$), $5.55(\mathrm{dd}, 1 \mathrm{H}, J$ $=9.90,2.63 \mathrm{~Hz}$), $5.26(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, J=6.98 \mathrm{~Hz}), 5.18-5.15(\mathrm{~m}, 1 \mathrm{H}), 4.55$ (d AB q, $2 \mathrm{H}, J_{\mathrm{AB}}=13.89 \mathrm{~Hz}, \Delta \nu_{\mathrm{AB}}=86.62 \mathrm{~Hz}, J=2.35 \mathrm{~Hz}$), 4.15 $(\mathrm{d}, \mathrm{IH}, J=1.96 \mathrm{~Hz}), 4.03 \mathrm{~ns}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~d}, 1 \mathrm{H}$, $J=8.22 \mathrm{~Hz}$), 3.49 (s, 3 H), 3.41 (dd, $1 \mathrm{H}, J=9.77,1.19 \mathrm{~Hz}$), 3.14 (dd, $1 \mathrm{H}, J=9.66,1.96 \mathrm{~Hz}), 2.89-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.16(\mathrm{~m}, 4 \mathrm{H})$, $2.01-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~d}, 3 \mathrm{H}, J$ $=7.31 \mathrm{~Hz}), 1.25-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.43$ $\mathrm{Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=7.17 \mathrm{~Hz}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=6.39 \mathrm{~Hz}), 0.81(\mathrm{~d}$, $3 \mathrm{H}, J=6.79 \mathrm{~Hz}$), 0.79 (s, 9 H), -0.01 ($\mathrm{s}, 3 \mathrm{H}$), -0.06 (s, 3 H); MS (20 $\mathrm{eV}) 521\left(\mathrm{M}^{+}-\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{4}\right), 419\left(521-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}\right), 221$ (base peak).

Seco Ester, Pivalate 50, To a solution of $12 \mathrm{mg}(0.015 \mathrm{mmol})$ of enal 48 in 0.5 mL of tert-butyl alcohol and 0.5 mL of 2 -methyl-2butene at $0^{\circ} \mathrm{C}$ were added $8.5 \mathrm{mg}(0.075 \mathrm{mmol})$ of $80 \% \mathrm{NaClO}_{2}$ and 12.5 mg (0.090 mmol) of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ in 0.5 mL of $\mathrm{H}_{2} \mathrm{O}$. The resulting biphase mixture was raised to room temperature and stirred vigorously for 4 h . The reaction mixture was poured into pH 4.0 buffer, extracted three times with ether, dried over MgSO_{4}, and concentrated. The crude carboxylic acid 49 was dissolved in 1.0 mL of ether at $0^{\circ} \mathrm{C}$ and was esterified with an ethereal solution of diazomethane. Flash chromatography (elution with $1: 3$ ether-hexane) afforded $9.8 \mathrm{mg}(79 \%)$ of the ester 50 , which was homogeneous by TLC and spectroscopic analysis: $[\alpha]{ }^{25} \mathrm{D}$ $+147.20^{\circ}\left(\mathrm{c} 1.15, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3500,2960,2932,1719,1701$, $1279,1160,1072,840 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.58(\mathrm{~d}, 1 \mathrm{H}$, $J=1.90 \mathrm{~Hz}), 6.24(\mathrm{dt}, 1 \mathrm{H}, J=9.69,2.35 \mathrm{~Hz}), 5.82(\mathrm{dd}, 1 \mathrm{H}, J=$ $15.01,11.21 \mathrm{~Hz}$), 5.72 (dd, $1 \mathrm{H}, J=9.91,1.74 \mathrm{~Hz}$), 5.61 (dd, $1 \mathrm{H}, J$ $=15.01,9.69 \mathrm{~Hz}$), $5.55(\mathrm{dd}, 1 \mathrm{H}, J=9.91,2.57 \mathrm{~Hz}), 5.24(\mathrm{t}, 1 \mathrm{H}, J=$ $6.99 \mathrm{~Hz}), 5.19-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.54\left(\mathrm{~d} \mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J_{\mathrm{AB}}=\right.$ $\left.13.72 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=97.78 \mathrm{~Hz}, J=2.35 \mathrm{~Hz}\right), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=2.07 \mathrm{~Hz})$, $3.88-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, 1 \mathrm{H}, J=8.59 \mathrm{~Hz}), 3.47(\mathrm{~s}$, 3 H), 3.41 (dd, $1 \mathrm{H}, J=9.90,1.74 \mathrm{~Hz}$), 3.5 (dd, $1 \mathrm{H}, J=9.65,2.07$ $\mathrm{Hz}), 2.76-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.17(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.53$ (s, 3 H), 1.49-1.40 (m, 4 H), 1.21-1.18 (m, 1 H), 1.21 (d, $3 \mathrm{H}, J=7.25$ $\mathrm{Hz}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J=7.41 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=7.29$ $\mathrm{Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.81 \mathrm{~Hz}), 0.79(\mathrm{~d}, 3 \mathrm{H}, J=6.99 \mathrm{~Hz}), 0.78(\mathrm{~s}$, $9 \mathrm{H}),-0.08(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H})$; MS $(20 \mathrm{eV}) 521\left(\mathrm{M}^{+}-\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{5}\right)$, $435\left(521-\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}\right), 419\left(521-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCO}_{2} \mathrm{H}\right), 221$ (base peak).

Conjugated \mathbf{A}_{12} Seco Acid 51, A solution of $11 \mathrm{mg}(0.013 \mathrm{mmol})$ of A_{12} seco ester pivalate 50 in 2.5 mL of $4: 1 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ was treated with 5 mg of LiOH . The reaction was stirred at room temperature for 24 h and was then poured into 3 mL of $\mathrm{H}_{2} \mathrm{O}$ and carefully acidified to pH 3 with 0.5 N HCl . The aqueous phase was extracted with 3 additional portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over anhydrous MgSO_{4}, filtered, and concentrated at reduced pressure to give 9.0 mg (95%) of seco acid 51 as a colorless, crystalline foam, identical in all respects with an authentic sample prepared by degradation of avermectin $\mathrm{A}_{1 \mathrm{a}}$ by the procedure of Hanessian: $[\alpha]^{25}{ }_{\mathrm{D}}+199.66$ ($\mathrm{c} 4.47, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 3490,2980,2930,1695,1460,1380 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $6.58(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 6.26$ (ddd, $1 \mathrm{H}=10.6,2.4,2.4, \mathrm{~Hz}), 5.74$ (dd, $1 \mathrm{H}, J=9.9,1.7 \mathrm{~Hz}$), 5.72 (dd, $1 \mathrm{H}, J=13.6,10.6 \mathrm{~Hz}$), 5.60 (dd, $1 \mathrm{H}, J=13.6,8.8 \mathrm{~Hz}$), 5.54 (dd, $1 \mathrm{H}, J=9.9,2.4 \mathrm{~Hz}$), $5.18-5.21(\mathrm{~m}$, $1 \mathrm{H}), 4.62(\mathrm{dd}, 1 \mathrm{H}, J=13.9,2.5 \mathrm{~Hz}), 4.52(\mathrm{dd}, 1 \mathrm{H}, J=13.9,2.4 \mathrm{~Hz})$, $4.38-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 3.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.84-3.79$ (m, I H), 3.47 (s, 3 H), 3.44 (dd, $1 \mathrm{H}, J=10.0,1.9 \mathrm{~Hz}$), 3.14 (dd, $1 \mathrm{H}, J=9.7,2.2 \mathrm{~Hz}$), 2.79-2.69 (m, 1 H$), 2.40-2.00(\mathrm{~m}, 8 \mathrm{H})$, $1.62-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.45$ (br s, 3 H), I. $46-1.36$ (m, 2 H), 1.21 (d, 3 H , $J=7.2 \mathrm{~Hz}), 1.04(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.02$ ($\mathrm{s}, 3 \mathrm{H}$), $-0.05(\mathrm{~s}, 3 \mathrm{H})$; MS (20 eV) 437, 419, 390.

Conjugated $\mathrm{A}_{1 \mathrm{a}}$ Aglycon, C_{13} TBS 52, A solution of 33 mg (0.045 $\mathrm{mmol})^{53}$ of the seco acid $\mathbf{5 1}$ in 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$ was added very slowly over 2 h to a refluxing solution of TEA ($50 \mathrm{~mL}, 0.358 \mathrm{mmol}$) and 43 mg (0.16 mmol) of 2 -chloro- N -methylpyridinium iodide. After the addition was complete, the reaction was cooled to room temperature and 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic phase was washed once with 10 mL of saturated bicarbonate solution, dried over anhydrous MgSO_{4}, filtered, and concentrated at reduced pressure. Chromatography gave $19.8 \mathrm{mg}(62 \%)$ of conjugated A_{12} aglycon C_{13} TBS 52 as a crystalline form, which was identical in all respects with an authentic sample prepared by degradation of avermectin $\mathrm{A}_{1 \mathrm{a}}: \quad[\alpha]^{25}{ }_{\mathrm{D}}+297.01^{\circ}$ (c 1.34 CHCl_{3}); IR $\left(\mathrm{CHCl}_{3}\right) 3495$ (br), 2960, 2930, 2860, 1695, 1460, 1375 cm^{-1}; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.13$ (ddd, $\left.J=10.7,24,24 \mathrm{~Hz}\right), 6.12(\mathrm{~d}, 1 \mathrm{H}$, $J=2 \mathrm{~Hz}), 5.76$ (dd, $1 \mathrm{H}, J=9.8,1.71 \mathrm{~Hz}), 5.73(\mathrm{dd}, 1 \mathrm{H}, J=15.1$, 9.4 Hz), $5.16(\mathrm{dd}, 1 \mathrm{H}, J=15.1,10.7 \mathrm{~Hz}), 5.57(\mathrm{dd}, 1 \mathrm{H}, J=9.8,2.6$ Hz), 5.45-5.38 (m, 1 H), 5.24-5.20 (m, l H), 4.82 (s, 1 H), 4.57 (dd, $1 \mathrm{H}, J=14.2,25 \mathrm{~Hz}), 4.50(\mathrm{dd}, 1 \mathrm{H}, J=14.2,2.5 \mathrm{~Hz}), 4.19(\mathrm{~d}, 1 \mathrm{H}$, $J=2.1 \mathrm{~Hz}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.0$, $1.7 \mathrm{~Hz}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{dd}, 1 \mathrm{H}, J=9.5,2.0 \mathrm{~Hz}), 2.85-2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 3 \mathrm{H}), 2.0-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.18(\mathrm{~d}, 3 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 1.06(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}), 0.91(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.89(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.04$ $(\mathrm{s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H})$; MS $(20 \mathrm{eV}) 712\left(\mathrm{M}^{+}\right), 694\left(\mathrm{M}^{+}-18\right), 221$ (base peak); HRMS (EI) calcd for $\mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{Si} 712.4372$, found 712.4153
[4S,6R,13S,25R(S)]-2,3,22,23-Tetradehydro-28-deoxy-6,28-epoxy-3,4-dihydro-13-hydroxy-25-(1-methylpropyl) milbemycin B (53), To a solution of $30 \mathrm{mg}(0.042 \mathrm{mmol})^{53}$ of silyl ether 52 in 2.0 mL of anhydrous THF at room temperature was added $169 \mu \mathrm{~L}$ of tetrabutylammonium fluoride (1.0 M in THF), and the resulting mixture was stirred at room temperature for 2 h . The mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$, extracted with ether, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography (1:2 ethyl acetate-hexane) gave 21.7 mg (87%) of the alcohol 53 , which was homogeneous by TLC and spectroscopic analysis: $[\alpha]^{25}{ }_{\mathrm{D}}+358.48^{\circ}$ (c $0.92, \mathrm{CHCl}_{3}$); IR $\left(\mathrm{CHCl}_{3}\right) 3500,3010,2960,2942,1695,1459,1378$, 1251, 1172, $1110,1070,1000 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.14-6.11 (m, 2 H$), 5.72(\mathrm{dd}, 1 \mathrm{H}, J=9.86,1.68 \mathrm{~Hz}), 5.74-5.72(\mathrm{~m}$, $2 \mathrm{H}), 5.56(\mathrm{dd}, 1 \mathrm{H}, J=9.86,2.58 \mathrm{~Hz}), 5.35-5.29(\mathrm{~m}, 2 \mathrm{H}), 4.80(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.54\left(\mathrm{~d} \mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J_{\mathrm{AB}}=14.27 \mathrm{~Hz}, \Delta \nu_{\mathrm{AB}}=29.40 \mathrm{~Hz}, J=2.47\right.$ $\mathrm{Hz}), 4.18(\mathrm{~d}, 1 \mathrm{H}, J=1.99 \mathrm{~Hz}), 3.97(\mathrm{brs}, 1 \mathrm{H}), 3.91-3.90(\mathrm{~m}, 1 \mathrm{H})$, $3.47(\mathrm{~s} .3 \mathrm{H}), 3.45(\mathrm{dd}, 1 \mathrm{H}, J=8.20,1.64 \mathrm{~Hz}), 3.16(\mathrm{dd}, 1 \mathrm{H}, J=9.55$, $1.99 \mathrm{~Hz}), 2.63-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.38(\mathrm{~m}, 2 \mathrm{H})$, 2.29-2.24 (m, 2 H), 1.97-1.93 (m, 1 H), 1.86-1.83 (m, 1 H), 1.66-1.58 $(\mathrm{m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, 3 \mathrm{H}, J=7.26 \mathrm{~Hz})$, $1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.95 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.33 \mathrm{~Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}$, $J=7.52 \mathrm{~Hz}), 0.88(\mathrm{~d}, 3 \mathrm{H}, J=6.74 \mathrm{~Hz}) ; \mathrm{MS}(20 \mathrm{eV}) 599\left(\mathrm{M}^{+}+1\right)$, $598\left(\mathrm{M}^{+}\right), 305$ (base peak); HRMS (EI) calcd for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{8} 598.3507$, Found 598.3528.

2-epi-A A Aglycon 54, To a solution of $50 \mathrm{mg}(0.084 \mathrm{mmol})^{53}$ of enoate 53 in 1.0 mL of anhydrous THF at $-78^{\circ} \mathrm{C}$ was added $560 \mu \mathrm{~L}$ of lithium diisopropylamide (1.5 M in cyclohexane). After the reaction mixture had stirred for 15 min at $-78^{\circ} \mathrm{C}, 2.0 \mathrm{~mL}$ of a $1: 1$ mixture of THF and 1.0 N HCl was added, and the solution was warmed to ambient temperature. The mixture was extracted three times with ether, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with 1:4 ethyl acetate-hexane) gave 35.3 mg (71%) of 2 -epi- $\mathrm{A}_{1 \mathrm{a}}$ aglycon 54 and 13.1 mg (26%) of the recovered enoate 53. Analytical data for $2-e \mathrm{ep}-\mathrm{A}_{1 \mathrm{a}}$ aglycon 54: $[\alpha]^{25} \mathrm{D}+209.66^{\circ}\left(\mathrm{c} 2.07, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3600,3520$, 1700, 1380, $1189,999 \mathrm{~cm}^{-1}$; NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.92-5.91(\mathrm{~m}$, 1 H) , 5.77 (dd, $1 \mathrm{H}, J=9.89,1.63 \mathrm{~Hz}$), $5.78-5.76(\mathrm{~m}, 3 \mathrm{H}), 5.57$ (dd, $1 \mathrm{H}, J=9.89,2.49 \mathrm{~Hz}), 5.48-5.43(\mathrm{M}, 1 \mathrm{H}), 5.29-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.41$ $(\mathrm{d}, 1 \mathrm{H}, J=2.28 \mathrm{~Hz}), 4.39\left(\mathrm{~d} \mathrm{ABq}, 2 \mathrm{H}, J_{\mathrm{AB}}=13.27 \mathrm{~Hz}, \Delta \nu_{\mathrm{AB}}=\right.$ $210.05 \mathrm{~Hz}, J=2.20 \mathrm{~Hz}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.93-3.90(\mathrm{~m}$, $1 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dd}, 1 \mathrm{H}, J=9.96,1.52$ $\mathrm{Hz}), 3.16-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 3 \mathrm{H}), 1.91$ (ddd, $1 \mathrm{H}, J=12.05,4.73,1.58 \mathrm{~Hz}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.69-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.50 \mathrm{~s}, 3 \mathrm{H}), 1.12-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J$ $=6.92 \mathrm{~Hz}), 0.96(\mathrm{t}, 3 \mathrm{H}, J=7.37 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=7.23 \mathrm{~Hz}), 0.89$ (d, $3 \mathrm{H}, J=6.70 \mathrm{~Hz}$); MS (20 eV) $598\left(\mathrm{M}^{+}\right), 151$ (base peak).

Avermectin $A_{1 a}$ Aglycon 55, A mixture of 28 mg (0.047 mmol) of 2-epi-avermectin A_{la} aglycon 54 and 1.0 g of imidazole in 4.0 mL of dry benzene was heated at reflux for 1.5 h . The reaction mixture was poured into 0.1 N HCl , extracted three times with ether, dried over MgSO_{4}, and concentrated. Flash chromatography (elution with $1: 2$ ethyl acetate-
(53) The material was replenished at this stage with compound provided by degradation of naturally occuring avermectin. cf.: Hanessian, S.; Ugolini, A.; Hodges, P.; Dube, D. Tetrahedron Lett. 1986, 27, 2699.
hexane) gave 26.5 mg (95\%) of a mixture of 2-epi-avermectin $A_{l_{\mathrm{a}}}$ aglycon 54, avermectin $A_{l_{a}}$ aglycon 55 , and conjugated avermectin $A_{1 a}$ aglycon 53. Separation of this mixture via preparative thin-layer chromatography (two elutions with $30: 70$ ethyl acetate-hexane) yielded 5.9 $\mathrm{mg}(21 \%)$ of $53,9.1 \mathrm{mg}(33 \%)$ of 54 , and $8.9 \mathrm{mg}(32 \%)$ of avermectin $\mathrm{A}_{1 \mathrm{a}}$ aglycon 55. The avermectin $\mathrm{A}_{1 \mathrm{a}}$ aglycon so produced was spectroscopically ($500-\mathrm{MHz}$ NMR, IR, MS) identical with the material derived from degradation of avermectin $A_{l a}$.

Glycal 59, A cold $\left(-78^{\circ} \mathrm{C}\right)$ solution of 758 mg of pyrone 58 (4.45 $\mathrm{mmol})$ and $1.6 \mathrm{~g}(4.45 \mathrm{mmol})$ of $\mathrm{CeCl}_{3}, 7 \mathrm{H} 2 \mathrm{O}$ in 75 mL of $2: 1$ methylene chloride-ethanol was treated with a solution of NaBH_{4} in ethandl (185 $\mathrm{mg}, 4.9 \mathrm{mmol}$ in 20 mL ethanol). The addition took approximately 20 min . The reaction was allowed to warm slowly to $0^{\circ} \mathrm{C}$ and quenched by the addition of brine and pH 7 buffer. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by chromatography gave $703 \mathrm{mg}(92 \%)$ of alcohol 59 as a clear, colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}{ }^{-40.55^{\circ}}$ (c $0.93, \mathrm{CHCl}_{3}$); IR (neat) 3400 (br), 2980, 2940, 2880, 1740, $1650 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.37(\mathrm{dd}, 1 \mathrm{H}, J=6.1$, $1.5 \mathrm{~Hz}), 4.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.9,2.5 \mathrm{~Hz}), 4.76(\mathrm{dd}, 1 \mathrm{H}, J=9.4,6.8 \mathrm{~Hz}$), $4.29(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dq}, 1 \mathrm{H}, J=9.6,6.4 \mathrm{~Hz}), 2.49(\mathrm{~d}, 1 \mathrm{H}, J=5.8$ $\mathrm{Hz}, \mathrm{OH}), 2.15(\mathrm{~s}, 3 \mathrm{H}), \mathrm{I} .31(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz})$; MS (20 eV) 172,154 $\left(\mathrm{M}^{+}-18\right) 112\left(\mathrm{M}^{+}-\mathrm{ACOH}\right), 97$ (base peak); HRMS (CI) calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}_{4}\left(\mathrm{M}^{+}+1\right), 173.0813$ found 173.0816.

Glycal Methyl Ether 60, A solution of alcohol 59 ($422 \mathrm{mg}, 2.45$ mmol) in dry ethyl ether was treated with $1.7 \mathrm{~g}(7.36 \mathrm{mmol})$ of $\mathrm{Ag}_{2} \mathrm{O}$ and $1.04 \mathrm{~g}(7.36 \mathrm{mmol})$ of MeI. The resulting black suspension was stirred vigorously for 48 h , at room temperature. The reaction mixture was then filtered and the filter cake was washed several times with anhydrous ether, and the combined ether washings were washed with saturated NaHCO_{3}, dried over MgSO_{4}, filtered, and concentrated in vacuo. Chromatography of the residue gave $416 \mathrm{mg}(91 \%)$ of methyl ether 60 as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+18.6^{\circ}\left(c \mathrm{l} .02, \mathrm{CHCl}_{3}\right)$; IR (neat) 2990, 2940, 2880, 2825, 1745, 1650, 1455, $1380 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 6.4(\mathrm{dd}, 1 \mathrm{H}, J=6.2,1.4 \mathrm{~Hz}), 5.03(\mathrm{dd}, 1 \mathrm{H}, J=7.4,5.8 \mathrm{~Hz}), 4.85$ (dd, $1 \mathrm{H}, J=6.2,3.0 \mathrm{~Hz}$), 4.06 (dd $1 \mathrm{H}, J=7.4,6.7 \mathrm{~Hz}$), $3.90(\mathrm{~m}, 1$ H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ; \mathrm{MS}(20 \mathrm{eV})$ $126\left(\mathrm{M}^{+}-\mathrm{AcOH}\right), 111,87$ (base peak); HRMS (CI) calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{O}_{4}$ $\left(\mathrm{M}^{+}+1\right) 187.0971$, found 187.0984. L-Oleandral (61), A solution of glycal $60(142 \mathrm{mg}, 0.763 \mathrm{mmol})$ in 10 mL of MeOH was treated with a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ at room temperature. The reaction was stirred at room temperature for 5 h and quenched by being poured into 30 mL of saturated NaHCO_{3}. The product was isolated by extraction $(4 \times 20 \mathrm{~mL})$ with methylene chloride. The organics was dried over anhydrous MgSO_{4}, filtered, and concentraed at reduced pressure. Chromatography of the residue on silica gel (40% ether pentane) gave 105 mg of alcohol $61(96 \%)$ as a clear, colorless oil: $[\alpha]_{\mathrm{D}}^{25}+53.80^{\circ}(\mathrm{c}$ 1.63, CHCl_{3}); IR (neat) 3420 (br), 2970, 2930, 2890, $2830 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.34(\mathrm{dd}, 1 \mathrm{H}, J=6.11,1.4 \mathrm{~Hz}), .83(\mathrm{dd}, 1 \mathrm{H}, J=6.1,2.1$ Hz), $3.82-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.55$ (ddd, $1 \mathrm{H}, J=10.7,7.1,3.6 \mathrm{~Hz}$), 3.41 (s, 3 H), 2.64 (br s, 1 H), $1.39(\mathrm{~d}, 3 \mathrm{H}, J=63 \mathrm{~Hz})$; MS $(20 \mathrm{eV}) 145$, $\left(\mathrm{M}^{+}-1,7.0\right), 144\left(\mathrm{M}^{+}\right), 87$ (base peak); HRMS (CI), calcd for C_{7}. $\mathrm{H}_{12} \mathrm{O}_{3}$ 144.0786, found 144.0788 .

Methyl Oleandroside (62), A solution of alcohol 61 ($100 \mathrm{mg}, 0.69$ mmol) in 3 mL of anhydrous MeOH at $0^{\circ} \mathrm{C}$ was treated with 123 mg (0.69 mmol) of NBS. TLC analysis indicated that the reaction was complete within 5 min . The reaction was quenched by the addition of ca. 10 mL of pH 7 buffer and extracted with $4 \times 5 \mathrm{~mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; the organics were dried over anhydrous MgSO_{4}, filtered, and concentrated at reduced pressure. The crude material was dissolved in 4 mL of dry toluene and treated with $200 \mathrm{mg}(0.69 \mathrm{mmol})$ of ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnH}$ and a catalytic amount of AIBN. This mixture was heated to reflux for 5 min under argon, at which time TLC analysis indicated completion. The solution was cooled to room temperature and concentrated in vacuo; chromatography (hexanes $\rightarrow 30 \%$ EtOAc-hexanes) gave 129 mg of material still contaminated with ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnX}$-decomposition products. This material was dissolved in 10 mL of acetonitrile and extracted $3 \times 2 \mathrm{~mL}$ of hexanes. Concentration gave 115 mg (95%) of a $1.55: 1 \mathrm{mix}$ of α - and β-methyl glycosides, which were easily separable by the same chromatography as above.

Analytical data for the α-methyl glycoside 62a: $[\alpha]^{25} \mathrm{D}-70.43^{\circ}$ (c $1.15, \mathrm{CHCl}_{3}$); IR (neat) 3450 (br), 2940, 2900, 2835, $1450,1375 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.78(\mathrm{dd}, 1 \mathrm{H}, J=3.3,0.7 \mathrm{~Hz}), 3.65(\mathrm{dq}, 1 \mathrm{H}, J=9.1$, $6.2, \mathrm{~Hz}), 3.50$ (ddd, $1 \mathrm{H}, J=11.4,8.9,4.9 \mathrm{~Hz}$), $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}$, 3 H), 3.6 (ddd, $1 \mathrm{H}, J=9.1,8.9,2.1 \mathrm{~Hz}), 2.56(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}$), 2.27 (ddd, $1 \mathrm{H}, J=12.8,4.9,1.3 \mathrm{~Hz}$), 1.51 (ddd, $1 \mathrm{H}, J=12.8,11.4$, 3.7 Hz), $1.31(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz})$; MS (20 eV) $145\left(\mathrm{M}^{+}-\mathrm{OMe}\right), 74$, (base peak). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 54.53: \mathrm{H}, 9.14$. Found: C , 54.15: H, 8.90.

Analytical data for β-methyl glycoside 62 b : mp $75-78{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}$ $+58.40^{\circ}\left(c 1.25, \mathrm{CH}_{3} \mathrm{Cl}_{3}\right)$; IR $\left(\mathrm{CH}_{3} \mathrm{Cl}_{3}\right) 3580,3450,3020,2940,1450$, $1385 \mathrm{~cm}^{-1} ; \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.38(\mathrm{dd}, 1 \mathrm{H}, J=9.6,2.0 \mathrm{~Hz}), 3.50(\mathrm{~s}$,
$3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.39(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 2.34$ (ddd, $1 \mathrm{H}, J=12.2,4.3,2.0 \mathrm{~Hz}$), 1.40 (ddd, $1 \mathrm{H}, J=12.2,9.6,2.1 \mathrm{~Hz}$), $1.36(\mathrm{~d}, 3 \mathrm{H}, J=6.1 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C}, 54.53: \mathrm{H}, 9.14$. Found: C, 54.52; H, 8.94.

Iodo Disacharride 63, A solution of glycal $60(220 \mathrm{mg}, 1.55 \mathrm{mmol})$ and 290 mg of α-methyl glycoside 62a ($290 \mathrm{mg}, 1.64 \mathrm{mmol}$) in 5 mL of dry acetonitrile at $0{ }^{\circ} \mathrm{C}$ was treated with $360 \mathrm{mg}(1.6 \mathrm{mmol})$ of N iodosuccininide. After 0.5 h the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL) and poured into 30 mL of saturated NaHSO_{3} (aqueous). The layers were separated, and the aqueous phase was extracted with $3 \times 15 \mathrm{~mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over anhydrous MgSO_{4}, filtered, and concentrated at reduced pressure. Chromatography of the residue gave $377 \mathrm{mg}(65 \%)$ of the C_{2}-iodo disacharride 63 as a single stereoisomer: $\mathrm{mp} 118-119^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}-88.73^{\circ}\left(c 2.77, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3000,2935,2900,2830,1740,1450,1375 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.57(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}) ; 5.01(\mathrm{dd}, 1 \mathrm{H}, J=9.7,8.9 \mathrm{~Hz})$, $4.74(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}), 4.54(\mathrm{dd}, 1 \mathrm{H}, J=4.1,1.7 \mathrm{~Hz}), 3.94(\mathrm{dq}, 1$ $\mathrm{H}, J=9.7,6.3 \mathrm{~Hz}$), $3.64(\mathrm{dq}, 1 \mathrm{H}, J=9.4,63 \mathrm{~Hz}$), 3.57 (ddd, $1 \mathrm{H}, J$ $=11.4,8.7,4.9 \mathrm{~Hz}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{app}$ $\mathrm{t}, 1 \mathrm{H}, J=9.4,8.7 \mathrm{~Hz}$) , 2.91 (dd, $1 \mathrm{H}, J=8.9,4.1 \mathrm{~Hz}$), 2.27 (ddd, 1 $\mathrm{H}, J=13.0,5.1,1.4 \mathrm{~Hz}$), $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{ddd}, 1 \mathrm{H}, J=13.0,11.4$, $3.6 \mathrm{~Hz}), 1.28(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.19(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{8}$: $\mathrm{C}, 41.82 ; \mathrm{H}, 5.98$. Found: $\mathrm{C}, 41.87 ; \mathrm{H}, 5.98$.

Phenylthlo Iodo Disaccharride 64, A solution of C^{\prime}-iodo disacharide $63(500 \mathrm{mg}, 1.02 \mathrm{mmol})$ in 8 mL of dichloroethane was treated with 560 mg (3.07 mmol) of (trimethylsilyl)thiophenol, $650 \mathrm{mg}(2.04 \mathrm{mmol})$ of ZnI_{2}, and $370 \mathrm{mg}(1.02 \mathrm{mmol})$ of TBAI. The mixture was then heated to reflux for 1 h . The reaction was cooled to room temperature and quenched by diluting with 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and by being poured into 80 mL of ice-cold 0.5 N NaOH . The aqueous phase was extracted with 3 additional $30-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organics were dried over MgSO_{4}, filtered, and concentrated at reduced pressure. Chromatography of the residue on silica gel (15% ethyl acetate-hexanes) gave 473 mg of a $2: 1 \mathrm{mix}$ of $\alpha+\beta$ phenylthio anomers 64 , which was separable by chromatography. Analytical data for the α anomer: $[\alpha]^{25}{ }_{D}$ $-178.6\left(c 2.52, \mathrm{CHCl}_{3}\right.$); IR (neat) 2980, 2940, 2830, 1750, 1575, 14.80, $1450 \mathrm{~cm}^{-1}$; NMR 7.40-7.5 (m, 2 H), $7.22-7.35(\mathrm{~m}, 3 \mathrm{H}), 5.58-5.64(\mathrm{~m}$, $2 \mathrm{H}), 5.03(\mathrm{dd}, 1 \mathrm{H}, J=9.5,8.8 \mathrm{~Hz}), 4.58(\mathrm{dd}, 1 \mathrm{H}, J=4.0,1.9 \mathrm{~Hz})$, $4.18(\mathrm{dq}, 1 \mathrm{H}, J=9.2,6.2 \mathrm{~Hz}), 3.97(\mathrm{dq}, 1 \mathrm{H}, J=9.5,6.2 \mathrm{~Hz}), 3.61$ (ddd, $J=11.1,8.5,4.7 \mathrm{~Hz}$), 3.41 (s, 3 H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.25$ (dd, 1 H , $J=9.2,8.5 \mathrm{~Hz}), 2.95(\mathrm{dd}, 1 \mathrm{H}, J=8.8,4.1 \mathrm{~Hz}), 2.51(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.1,4.7 \mathrm{~Hz}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{ddd}, 1 \mathrm{H}, J=13.1,11.1,4.0, \mathrm{~Hz})$, $1.29(\mathrm{~d}, 3 \mathrm{H}, J=62 \mathrm{~Hz}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=62 \mathrm{~Hz}) ; \mathrm{MS}(20 \mathrm{eV}) 457$ ($\mathrm{M}^{+}-109$). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{SI}: \mathrm{C} 46.65 ; \mathrm{H}, 5.51 ; \mathrm{S}, 5.66$. Found: C; 46.90; H, 5.54; S, 6.09 .

Iodo Disacharride Glycal 65, A solution of 64 ($473 \mathrm{mg}, 0.83 \mathrm{mmole}$) in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was treated with 170 mg of MCPBA (85%) in 1 portion and stirred at $0^{\circ} \mathrm{C}$ for 10 min . The reaction was poured into 50 mL of saturated NaHCO_{3}, and the layers were separated. The aqueous layer was extracted with 3 additional $30-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organics were dried over MgSO_{4}, filtered, and concentrated. The crude mixture of sulfoxides was immediately dissolved in 120 mL of dry benzene and heated to reflux for 0.5 h . The reaction was cooled to room temperature and poured into 50 mL of saturated NaHCO_{3}. The layers were separated, and the aqueous phase was extracted with $3 \times 40 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over anhydrous MgSO_{4}, filtered, and concentrated at reduced pressure. Chromatography of the residue (20% ethyl acetate-hexanes gave 274 mg (72% for two steps) of C_{2}-iododisacharride glycal 65 as a clear, colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}{ }^{-56.25^{\circ}}\left(c 0.8 \mathrm{CHCl}_{3}\right)$; IR (neat) $2980,2940,2910,2830$, 1755, 1650, $1455,1375 \mathrm{~cm}^{-1} ;$ NMR $\left(\mathrm{CDCl}_{2}\right) \delta 6.37(\mathrm{dd}, 1 \mathrm{H}, J=6.1$, $6.1 \mathrm{~Hz}), 5.61(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 5.02(\mathrm{dd}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}), 4.85$ (dd, $1 \mathrm{H}, J=6.1,2.5 \mathrm{~Hz}), 4.51(\mathrm{dd}, 1 \mathrm{H}, J=4.0,1.7 \mathrm{~Hz}), 3.87-4.02(\mathrm{~m}$, 3 H), 3.61 (dd, $1 \mathrm{H}, J=8.7,6.4 \mathrm{~Hz}$), 3.37 (s, 3 H), 3.36 (s, 3 H), 2.9 (dd, $1 \mathrm{H}, J=8.9,40 \mathrm{~Hz}$), $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.22$ $(\mathrm{d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz})$; MS $(20 \mathrm{eV}) 425\left(\mathrm{M}^{+}-\mathrm{MeOH}\right), 380\left(\mathrm{M}^{+}-86\right)$, 313,221 (base peak); HRMS (CI) calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{I} 457.0722$ (M^{+} +1), found 457.0732 .

Disacharride Glycal 66, A solution of $326 \mathrm{mg}(0.715 \mathrm{mmol})$ of C_{2}-iodo glycal disacharride 65 in 10 mL of dry benzene was treated with $416 \mathrm{mg}(1.4 \mathrm{mmol})$ of ${ }^{\mathrm{n}} \mathrm{Bu}_{3} \mathrm{SnH}$ and a catalytic amount of AlBN . The
mixture was then heated to reflux under argon for 1 h , cooled to room temperature, and concentrated at reduced pressure. The residue was chromatographed on silica gel (5% ethyl acetate-hexanes $\rightarrow 30 \%$ ethyl acetate-hexanes) to give 192 mg (81%) of glycal 66 after crystallization from ether-hexanes: $\mathrm{mp} 82-83^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-84.86^{\circ}\left(c 1.4, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 2980,2940,1740,1650,1455,1375 \mathrm{~cm}^{-1}$; NMR (250 mHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.38(\mathrm{dd}, 1 \mathrm{H}, J=6.1,1.5 \mathrm{~Hz}), 5.41(\mathrm{dd}, 1 \mathrm{H}, J=4.0,12 \mathrm{~Hz})$, 4.83 (dd, $1 \mathrm{H}, J=6.1,2.5 \mathrm{~Hz}$), 4.68 (app, $\mathrm{t}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}$), $3.89-4.01$ (m, 2 H), 3.82 (dq, $1 \mathrm{H}, J=9.5,6.2, \mathrm{~Hz}$), 3.64 (dd, $1 \mathrm{H}, J=8.6,6.2$ $\mathrm{Hz}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=9.5,5.0 \mathrm{~Hz}), 3.35(\mathrm{~s}, 3 \mathrm{H}) 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.27$ (ddd, $1 \mathrm{H}, J=13.2,5.0,1.2 \mathrm{~Hz}$), $2.1(\mathrm{~s}, 3 \mathrm{H}), 1.68$ (ddd, $J=13.2,9.5$, 4.0 Hz), $1.38(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}), 1.16(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz})$; MS (20 eV) 299, ($\mathrm{M}^{+}-31, \mathrm{OMe}$), 273, 424, 241, 187 (base peak). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{7}: \mathrm{C}, 58.18 ; \mathrm{H}, 7.92$. Found: $\mathrm{C}, 58.36 ; \mathrm{H}, 8.24$.
$\mathbf{2}^{\prime}$-Iodoavermectin $\mathrm{A}_{\mathrm{la}} \mathbf{4}^{\prime \prime}$-Acetate (67), A solution of $27 \mathrm{mg}(0.083$ mmol) of glycal disacharride 66 and $25 \mathrm{mg}(0.041 \mathrm{mmol})$ of avermectin $\mathrm{A}_{\text {la }}$ aglycon 55 in 0.20 mL of dry acetonitrile was treated with 19 mg (0.084 mmol) of N-iodosuccinimide. After 1 h at room temperature, the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and poured into 20 mL of saturated NaHSO_{3}. The layers were separated, and the aqueous phase was extracted with $3 \times 10 \mathrm{~mL}$ portions of methylene chloride. The combined organics were dried over MgSO_{4}, filtered, and concentrated at reduced pressure. Chromatography (30% ethyl acetate-hexanes) of the residue gave 28.6 mg (64%) of C_{2}, iodoavermectin $\mathrm{A}_{1 \mathrm{a}}, \mathrm{C}_{4}$, acetate (67) as a foam: $[\alpha]^{25}$ D $+18.06\left(c 3.10, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right), 3480$ (br), 3010, 2970, 2930, 1738, 1710, 1455, $1375 \mathrm{~cm}^{-1}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.83$ (ddd, $1 \mathrm{H}, J=10.7,2.4,2.3 \mathrm{~Hz}$), $5.72-5.77(\mathrm{~m}, 2 \mathrm{H}), 5.68$ (dd, 1 H , $J=14.9,9.4 \mathrm{~Hz}), 5.55(\mathrm{dd}, 1 \mathrm{H}, J=9.8,2.5 \mathrm{~Hz}), 5.35-5.45(\mathrm{~m}, 2 \mathrm{H})$, $5.27(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 5.09(\mathrm{~d}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 4.97(\mathrm{~m}, 1 \mathrm{H}), 4.69$ (dd, $1 \mathrm{H}, J=14.4,2.4 \mathrm{~Hz}$), 4.67 (app t, $1 \mathrm{H}, J=9.4 \mathrm{~Hz}$), 4.63 (dd, 1 $\mathrm{H}, J=14.4,2.3 \mathrm{~Hz}), 4.49(\mathrm{dd}, 1 \mathrm{H}, J=3.9,1.5 \mathrm{~Hz}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 4.04$ $(\mathrm{d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 3.95-4.0(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{dq}, 1 \mathrm{H}, J=9.5,6.3 \mathrm{~Hz})$, $3.95-3.8(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dq}, 1 \mathrm{H}, J=9.6,6.3 \mathrm{~Hz}), 3.59(\operatorname{appt} \mathrm{l}, \mathrm{H}, J$ $=9.6 \mathrm{~Hz}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, 1 \mathrm{H}, J=9.0,1.5 \mathrm{~Hz}), 3.43(\mathrm{~s}, 3 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, 1 \mathrm{H}, J=8.2,3.9 \mathrm{~Hz}), 2.51-2.55$ (m, l H), 2.52-2.40 (m, 5H), 2.10(s, 3H), 2.01 (ddd, $J=12.1,4.8$, $1.5 \mathrm{~Hz}), 1.81(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.72-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.45(\mathrm{~m}, 5 \mathrm{H}), 1.50$ (brs, 3 H), $1.30(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 1.17(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.15$ (d, $3 \mathrm{H}, J=6.2 \mathrm{~Hz}), 0.96(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=6.4$ $\mathrm{Hz}), 0.91(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$.

Deiodination: Avermectin $A_{12} 4^{\prime \prime}$-Acetate (68), A solution of 2^{\prime}-iodoavermectin $\mathrm{A}_{1 \mathrm{a}} 4^{\prime \prime}$-acetate (67) ($12.3 \mathrm{mg}, 0.0116 \mathrm{mmol}$) in 4 mL of toluene was treated with $18 \mathrm{mg}(0.061 \mathrm{mmol})$ of tri-n-butyltin hydride and a catalytic amount of AIBN. The mixture was heated to reflux for 10 min , cooled to room temperature, and concentrated at reduced pressure. Chromatography ($0-15 \%$ ethyl acetate-hexanes) gave 8.4 mg (78%) of avermectin $\mathrm{A}_{12} 4^{\prime \prime}$-acetate 68 , which was identical with an authentic sample prepared by acetylation of avermectin $A_{1 \mathrm{l}}(500-\mathrm{MHz}$ NMR, IR).

Avermectin $\mathbf{A}_{1 \mathrm{a}}(\mathbf{1}), \mathrm{A}$ cold $\left(78^{\circ} \mathrm{C}\right)$ solution of $12.1 \mathrm{mg}(0.013 \mathrm{mmol})$ of avermectin $\mathrm{A}_{1 \mathrm{a}} \mathrm{C}_{4^{\prime \prime}}$ acetate (68) in 0.5 mL of THF was treated with $26 \mu \mathrm{~L}(0.026 \mathrm{mmol})$ of a 1 M solution of $\mathrm{LiEt}_{3} \mathrm{BH}$ in THF; the reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h and quenched by the rapid addition of 3 mL of pH 7 buffer, followed by 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The layers were separated, and the aqueous phase was extracted with $3 \times 2 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over anhydrous MgSO_{4}, filtered, and concentrated at reduced pressure. Chromatography of the residue ($1: 1$ ethyl acetate-hexanes) gave 11.2 mg (97%) of avermectin A_{la} (1), which was identical with an authentic sample ($500-\mathrm{MHz}$ NMR, IR).

Acknowledgment. This research was supported by PHS Grant Al 16943. PHS Postdoctoral Fellowships (Grant 5 F32 GM11051) to D.M.A., (Grant 5 F32 GM 10576) to H.G.S., and (Grant 5 F32 CA07583) to R.H. are gratefully acknowledged. NMR spectra were obtained through the auspices of The Northeast Regional NSF/NMR Facility at Yale University, which was supported by NSF Chemistry Division Grant CHE 7916210. We thank Drs. Helmut Mrozik and Michael Fisher of the Merck Co. for supplying samples of avermectin $B_{1 a}$.

[^0]: (1) Fisher, M. H.; Mrozik, H. Macrolide Antibiotics; Academic Press: New York, 1984; 553.
 (2) Sheehan, J. C. The Enchanted Ring; MIT Press: Cambridge, 1982.
 (3) Burg, R. W.; et al Antimicrob. Agents Chemother. 1979, I5, 361.
 (4) Springer, J. P.; Arison, B. A.; Hirshfield, J. M.; Hoogsteen, K. J. Am. Chem. Soc. 1981, IO3, 4221
 (5) Albers-Schönberg, G.; Arison, B. H.; Chabala, J. C.; Douglas, A. W.; Eskola, P.; Fisher, M. H.; Lusi, A.; Mrozik, H.; Smith, J. L.; Tolman, R. L. J. Am. Chem. Soc. 1981, I03, 4216.
 (6) Fisher, M. H. Recent Advances in the Chemistry of Insect Control; Janes, N. F., Ed.; Royal Society of Chemistry: London, 1985; p 53 and references therein

[^1]: (14) Hanessian, S.; Ugolini, A.; Hodges, P. J.; Beaulieu, P.; Dubē, D.; Andrè, C. Pure Appl. Chem. 1987, 59, 299.
 (15) Hanessian, S.; Ugolini, A.; Dubē, D.; Hodges, P. J.; Andrē, C. J. J. Am. Chem. Soc. 1986, $108,2776$.
 (16) Hanessian, S.; Dubē̃, D.; Hodges, P. J. J. Am. Chem. Soc. 1987, 109, 7063.
 (17) Nicolaou, K. C.; Dolle, R. E.; Papahatjis, D. P.; Randall, J. J. Am. Chem. Soc. 1984, 106, 4189.
 (18) This carbon numbering system anticipates the construction of avermectin A_{La}.
 (19) Mrozik, H.; Eskola, P.; Fisher, M. H. J. Org. Chem. 1986, 51, 3058.
 (20) For a discussion of this distinction, see: Danishefsky, S. J. Aldrichchimica Acta 1986, 19, 59.

[^2]: (21) Danishefsky, S. J.; DeNinno, S. L.; Lartey, P. A. J. Am. Chem. Soc. 1987, 109, 2082.
 (22) (a) Wincott, F. E.; Danishefsky, S. J.; Schulte, G. Tetrahedron Lett. 1987, 28, 4951. (b) Kay, I. T.; Williams, E. G. Tetrahedron Lett. 1983, 24, 5915. (c) Kay, I. T.; Bartholomew, D. Tetrahedron Lett. 1984, 25, 2035. (d) Armistead, D. M.; Danishefsky, S. J. Tetrahedron Lett. 1987, 28, 49.
 (23) (a) Danishefsky, S. J.; Bednarski, M. D. J. Am. Chem. Soc. 1986, 108, 7060. (b) Danishefsky, S. J.; Bednarski, M. D. Tetrahedron Lett. 1985, 26, 3411 .

[^3]: (24) For a previous communication of these results, see: (a) Danishefsky, S. J.; Armistead, D. M.; Wincott, F. E.; Selnick, H. G.; Hungate, R. J. Am. Chem. Soc. 1987, 109, 8117. (b) Danishefsky, S. J.; Selnick, H. G.; Armistead, D. M.; Wincott, F. E. J. Am. Chem. Soc. 1987, I09, 8119.
 (25) This compound was obtained from hydrolysis of tri-O-acetyl-D-glucal with NaOMe in MeOH , followed by pivalolylation with pivaloyl chloride, pyridine, and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
 (26) Matarasso-Tchiroukhine, E.; Cadiot, P. J. Organomet. Chem. 1986, 121, 155.
 (27) Danishefsky, S. J.; Kerwin, J. R., Jr. J. Org. Chem. 1982, 47, 3803.

[^4]: (28) Cf.: Goering, H. L.; Singleton, V. D., Jr. J. Am. Chem. Soc. 1976, 98, 7854.
 (29) Danishefsky, S. J.; Larson, E.; Askin, D.; Kato, N. J. Am. Chem. Soc. 1985, $107,1246$.
 (30) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1984, 23, 556.

[^5]: (31) Keck, G. E.; Castellino, S. J. Am. Chem. Soc. 1986, 108, 3847.
 (32) Luche, J. L.; Gemal, A. L. J. Am. Chem. Soc. 1979, 101, 5848.
 (33) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon Press: Oxford, 1983.

[^6]: (40) Jones, G. H.; Moffat, J. G. Methods in Carbohydrate Chemistry; Academic Press: New York, 1972; Vol. VI, p 315
 (41) (a) Danishefsky, S. J.; DeNinno, M. P.; Phillips, G. P.; Zelle, R. E.; Lartey, P. A. Tetrahedron 1986, 42, 2809 . (b) Keck, G. E.; Abbott, D. E.; Boden, E. P.; Enholm, E. J. Tetrahedron Lett. 1984, 25, 3927.
 (42) Rolf, D.; Gray, G. R. J. Am. Chem. Soc. 1982, 104, 3539.
 (43) Robins, M. J.; Hansske, F.; Low, N. H.; Park, J. I. Tetrahedron Lett. 1984, 24, 367.

[^7]: (44) (a) Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1980, 21, 361. (b) Itoh, A.; Ozawa, S.; Oshima, K.; Nozaki, H. Bull. Chem. Soc. Jpn. 1981, 54, 274.
 (45) Mukaiyama, T; Usui, M.; Saigo, K. Chem. Lett. 1986, 49.
 (46) Fraser-Reid, B.; Wolleb, H.; Faghih, R.; Barchi, J., Jr. J. Am. Chem. Soc. 1987, 109, 933.

[^8]: (47) Mrozik, H.; Eskola, P.; Arison, B.; Albers-Schönberg, G.; Fisher, M. H. J. Org. Chem. 1982, 47, 489.
 (48) Hanessian, S.; Ugolini, A.; Hodges, P. J.; Dubē, D. Tetrahedron Lett. 1986, 27, 2699.
 (49) At this point the two anomers were separated chromatographically, and each was carried through the sequence of reactions.
 (50) Thiem, J.; Karl, H.; Schwentner, J. Synthesis 1978, 696.

[^9]: (51) Thiem, J.; Prahst, A.; Lundt, I. Liebigs. Ann, Chem. 1986, 6, 1044.
 (52) Hanessian, S. W.; Guindon, Y. Carbohydr. Res. 1980, 86, С3.

